本文将基于深度学习的卷积神经网络(CNN)应用于基于RGB-D-T的多模态人脸识别问题. 此外,引入了基于CNN的识别模块与各种纹理特征(LBP,HOG,HAAR,HOGOM)的后期融合,在基准RGB-D-T数据库上展示了更好的识别性能. 本文得到的结果表明,经典的纹理特征和基于CNN的特征可以相互补充以达到识别的目的. 已经开发了几种用于面部识别的算法来处理这些挑战. 这些算法的例子包括但不限于主成分分析(PCA),线性判别分析(LDA),局部二元模式(LBP),定向梯度直方图(HOG) ,H…
这篇笔记,仅仅是对选择性算法介绍一下原理性知识,不对公式进行推倒. 前言: 这篇论文介绍的是,如果快速的找到的可能是物体目标的区域,不像使用传统的滑动窗口来暴力进行区域识别.这里是使用算法从多个维度对找到图片中,可能的区域目标,减少目标碎片,提升物体检测效率. 下面是这篇文章的笔记: 介绍及引言: 图片是分层次的,比如下图中a: 沙拉和匙在沙拉碗里,而碗又在桌子上,另外桌子和木头有关或者说桌子和桌子上的所有东西有关.所以图片中的目标是有层次的. 图片分割应该按层次来,也不存在使用单个策略这样通用…
Abstract We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, inste…
摘要: 在不受限制的环境中拍摄的人脸图像通常包含显著的姿态变化,这会显著降低设计用于识别正面的算法的性能.本文提出了一种新颖的面部识别框架,能够处理±90°偏航范围内的全方位姿势变化.所提出的框架首先将原始姿态不变人脸识别问题转化为局部正面人脸识别问题.然后开发了一个健壮的基于块的人脸表示方案来表示合成的局部正面.对于每个块,在提出的多任务学习方案下学习转换字典.转换字典将不同姿势的特征转换为判别性子空间.最后,面部匹配是在块级而不是整体级执行的.在FERET,CMU-PIE和Multi-PIE…
前言 本文主要介绍2012-2015年的一些经典CNN结构,从AlexNet,ZFNet,OverFeat到VGG,GoogleNetv1-v4,ResNetv1-v2. 在论文笔记:CNN经典结构2中我介绍了2016-2017年的几个经典CNN结构,WideResNet,FractalNet,DenseNet,ResNeXt,DPN,SENet.另外,在ImageNet历年冠军和相关CNN模型中,我简单介绍了ImageNet和历年冠军. AlexNet 贡献:ILSVRC2012冠军,展现出了…
Self-paced Clustering Ensemble自步聚类集成论文笔记 2019-06-23 22:20:40 zpainter 阅读数 174  收藏 更多 分类专栏: 论文   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/zpainter/article/details/93378052 文章目录 0.摘要 1.introduction 2.Related Work 2.…
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正…
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,谢谢.…
Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不…
论文笔记1:Deep Learning         2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature上发表深度学习的综述性论文,介绍了什么是监督学习.反向传播来训练多层神经网络.卷积神经网络.使用深度卷积网络进行图像理解.分布式特征表示与语言处理.递归神经网络,并对深度学习技术的未来发展进行展望. 原文摘要: 1,深度学习可以让那些拥有多个处理层的计算模型来学习具有多层次抽象的数据的表示.        …