题目链接 题意:给定\(n\le 10^9\),求:\(F(n)=\sum_{i=1}^n\sum_{j=1}^i\frac{\mathrm{lcm}(i,j)}{\mathrm{gcd}(i,j)}\),对1e9+7取模 推式子: \(F(n)=\sum_{i=1}^n\sum_{j=1}^i\frac{\mathrm{lcm}(i,j)}{\mathrm{gcd}(i,j)}\) \(=\sum_{i=1}^n\sum_{j=1}^i\frac{ij}{\gcd^2(i,j)}\) \(=\…
\(\color{#0066ff}{ 题目描述 }\) 这是一道非常简单的数学题. 最近 LzyRapxLzyRapx 正在看 mathematics for computer science 这本书,在看到数论那一章的时候, LzyRapxLzyRapx 突然想到这样一个问题. 设 \[ F(n)=\sum_{i=1}^n\sum_{j=1}^i\frac{\mathrm{lcm}(i,j)}{\mathrm{gcd}(i,j)} \] 其中,\(\mathrm{lcm}(a,b)\) 表示…
题目链接 emm标题全称应该叫“莫比乌斯反演求出可狄利克雷卷积的公式然后卷积之后搞杜教筛” 然后成功地困扰了我两天qwq 我们从最基本的题意开始,一步步往下推 首先题面给出的公式是$\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ijgcd(i,j)$ 枚举gcd(i,j)=w,得到 $\sum\limits_{w=1}^{n}w\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ij[w=gcd(i,j)]$ 这时候我们设一个…
题目链接 \(Description\) 求\[\sum_{i=1}^n\sum_{j=1}^i\frac{lcm(i,j)}{gcd(i,j)}\] 答案对\(10^9+7\)取模. \(n<=10^9\) \(Solution\) 以前做的反演题都是\(j\)枚举到\(n\),但是现在\(j\)只枚举到\(i\)就非常难受,考虑怎么求\(\sum_{i=1}^n\sum_{j=1}^n\frac{lcm(i,j)}{gcd(i,j)}\). 可以把它看成是一个\(n*n\)的网格,第\(i\…
题目链接 简单的数学题 题目描述 输入一个整数n和一个整数p,你需要求出 \[\sum_{i=1}^n\sum_{j=1}^n (i\cdot j\cdot gcd(i,j))\ mod\ p\]  其中\(gcd(a,b)\)表示\(a\)与\(b\)的最大公约数 输入 一行两个整数\(p,n\) 输出 一行一个整数,为题目中所求值 样例 样例输入 998244353 2000 样例输出 883968974 数据范围 \(n\leq 10^{10}\) \(5\times 10^8 \leq…
题目描述 给出 $n$ 和 $p$ ,求 $(\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\gcd(i,j))\mod p$ . $n\le 10^{10}$ . 题解 欧拉函数(欧拉反演)+杜教筛 推式子: $$\begin{align}&\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\gcd(i,j)\\=&\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\sum\limits_{d|…
题目描述 求 \[\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} i*j*gcd(i,j) \pmod{p}\] \(n<=10^{10}\),\(p\)是质数 题解 推导很长就省略啦,, 有空补回来 最后推得这个式子: \[\sum\limits_{T = 1}^{n} (\frac{\lfloor \frac{n}{T} \rfloor * (\lfloor \frac{n}{T} \rfloor + 1)}{2})^2 * T^2 * \varphi…
题目大意:略 洛谷传送门 杜教筛入门题? 以下都是常规套路的变形,不再过多解释 $\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}ijgcd(i,j)$ $\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}ij\sum\limits_{d|gcd(i,j)}\varphi(d)$ $\sum\limits_{d=1}^{N} \varphi(d) \sum\limits_{i=1}^{N}\sum\limits_{j=1}^{…
题意简述 求出这个式子 \[ \sum_{i=1}^n\sum_{j=1}^n ij(i,j) \bmod p \] 做法 先用莫比乌斯反演拆一下式子 \[ \begin{split} \sum_{i=1}^n\sum_{j=1}^n ij(i,j)&=\sum_{d=1}^nd\sum_{i=1}^n\sum_{j=1}^n ij[(i,j)=d]\\ &=\sum_{d=1}^nd\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\sum_{j=1}^{\l…
题意 题目链接 Sol 反演套路题? 不过最后一步还是挺妙的. 套路枚举\(d\),化简可以得到 \[\sum_{T = 1}^m (\frac{M}{T})^n \sum_{d \ | T} d \mu(\frac{T}{d})\] 后面的显然是狄利克雷卷积的形式,但是这里\(n \leqslant 10^{11}\)显然不能直接线性筛了 设\(F(n) = n, f(n) = \phi(n)\) 根据欧拉函数的性质,有\(F(n) = \sum_{d \ | n} f(d)\) 反演一下 \…