数据仓库之ETL漫谈】的更多相关文章

数据仓库之ETL漫谈ETL,Extraction-Transformation-Loading的缩写,中文名称为数据抽取.转换和加载.大多数据仓库的数据架构可以概括为:数据源-->ODS(操作型数据存储)-->数据仓库(DW)-->数据集市(DM) ​一.数据抽取:可以理解为是把源数据的数据抽取到ODS或者DW中.1. 源数据类型: 关系型数据库,如Oracle,Mysql,Sqlserver等; 文本文件,如用户浏览网站产生的日志文件,业务系统以文件形式提供的数据等: 其他外部数据,如…
ETL,Extraction-Transformation-Loading的缩写,中文名称为数据抽取.转换和加载. 大多数据仓库的数据架构可以概括为: 数据源-->ODS(操作型数据存储)-->DW-->DM(data mart) ETL贯穿其各个环节. ​一.数据抽取: 可以理解为是把源数据的数据抽取到ODS或者DW中. 1. 源数据类型: 关系型数据库,如Oracle,Mysql,Sqlserver等; 文本文件,如用户浏览网站产生的日志文件,业务系统以文件形式提供的数据等: 其他外…
这个是Ralph kimball ETL的书籍,其中第10章主要讲如何管理数据仓库团队,ETL团队是属于数据仓库团队的:第一章和第二章是概况性的介绍,强烈建议大家都看下1/2/10章,对于大家形成对数据仓库和ETL共同的认识. 下面和大家分享下一些观点,英文的都是从Ralph kimball的书里面摘抄下来的,大家可以到书中对应章节看更详细的介绍,中文截图来自互联网.希望对大家形成common knowledge有帮助. ETL团队必须和业务需求结合在一起: 2. ETL团队的角色包括数据仓库架…
使用Hive转换.装载数据 1. Hive简介 (1)Hive是什么         Hive是一个数据仓库软件,使用SQL读.写.管理分布式存储上的大数据集.它建立在Hadoop之上,具有以下功能和特点: 通过SQL方便地访问数据,适合执行ETL.报表.数据分析等数据仓库任务. 提供一种机制,给各种各样的数据格式加上结构. 直接访问HDFS的文件,或者访问如HBase的其它数据存储. 可以通过MapReduce.Spark或Tez等多种计算框架执行查询.         Hive提供标准的SQ…
1        引言数据仓库建设中的ETL(Extract, Transform, Load)是数据抽取.转换和装载到模型的过程,整个过程基本是通过控制用SQL语句编写的存储过程和函数的方式来实现对数据的直接操作,SQL语句的效率将直接影响到数据仓库后台的性能. 目前,国内的大中型企业基本都具有四年以上计算机信息系统应用经验,积累了大量可分析的业务数据,这些信息系统中的数据需要通过搭建数据仓库平台才能得到科学的分析,这也是近几年数据仓库系统建设成为IT领域热门话题的原因. 2        优…
1.DWI DWI:数据湖.数据砥柱,一般存放在HDFS 数据仓库的基础数据来源,各种杂七杂八的数据 关键点:数据清洗.数据整合.异常处理.增量获取 ETL:E-数据抽取.数据清洁.格式转换,T-生成代理键ID.遵循三范式,L-数据加载 2.DWR DWR:数据仓库的中间层,星型结构 根据业务划分:维度数据(区域.项目.工厂等).交易数据(存量.发货.订单等) 3.DM DM:数据市场 按照业务组划分为9大责任中心(区域.系统部.集团.运营商.企业网.消费者.费用中心.DM Base.DM Su…
数据分析系统的总体架构分为四个部分 —— 源系统.数据仓库.多维数据库.客户端(图一:pic1.bmp) 其中,数据仓库(DW)起到了数据大集中的作用.通过数据抽取,把数据从源系统源源不断地抽取出来,可能每天一次,或者每3个小时一次(当然是自动的).这个过程,我们称之为ETL过程. 那么,今天,我们就来谈一谈:如何搭建数据仓库,在这个过程中都应该遵循哪些方法和原则:然后介绍一些项目实践中的技巧. 一.数据仓库的架构 数据仓库(Data Warehouse DW)是为了便于多维分析和多角度展现而将…
但是,在实施数据集成的过程中,由于不同用户提供的数据可能来自不同的途径,其数据内容.数据格式和数据质量千差万别,有时甚至会遇到数据格式不能转换或数据转换格式后丢失信息等棘手问题,严重阻碍了数据在各部门和各应用系统中的流动与共享.因此,如何对数据进行有效的集成管理已成为增强企业商业竞争力的必然选择. 数据仓库的自动ETL研究 下载PDF阅读器 数据仓库的建设是为了能支持决策分析.数据质量是数据仓库项目的生命线所在,也关系到数据分析.数据挖掘的质量.在进行决策分析或数据挖掘时,需要全面.正确地集成数…
每次面试,互联网的面试官,经常问我有没有用过ETL,每次我都懵逼,说没用过,觉得是多么高大上的东东,数据仓储 今天查了一下,我晕,自己天天用的Kettle就是最典型的ETL, 可以实现不同数据库之间的数据抽取,转换,只需要你有相应的数据库driver即可 查了一下资料记录一下: ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract).转换(transform).加载(load)至目的端的过程.ETL一词较常用在数据仓库,但其对象并不…
ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract).转换(transform).加载(load)至目的端的过程.ETL一词较常用在数据仓库,但其对象并不限于数据仓库. ETL是构建数据仓库的重要一环,用户从数据源抽取出所需的数据,经过数据清洗,最终按照预先定义好的数据仓库模型,将数据加载到数据仓库中去. 信息是现代企业的重要资源,是企业运用科学管理.决策分析的基础.目前,大多数企业花费大量的资金和时间来构建联机事务处理OLTP的…