Autoencoder】的更多相关文章

变分自编码器(Variational Autoencoder, VAE)通俗教程 转载自: http://www.dengfanxin.cn/?p=334&sukey=72885186ae5c357d85d72afd35935fd5253f8a4e53d4ad672d5321379584a6b6e02e9713966e5f908dd7020bfa0c555f dengfanxin 未来2016年11月15日 1. 神秘变量与数据集 现在有一个数据集DX(dataset, 也可以叫datapoin…
Contractive autoencoder是autoencoder的一个变种,其实就是在autoencoder上加入了一个规则项,它简称CAE(对应中文翻译为?).通常情况下,对权值进行惩罚后的autoencoder数学表达形式为: 这是直接对W的值进行惩罚的,而今天要讲的CAE其数学表达式同样非常简单,如下: 其中的 是隐含层输出值关于权重的雅克比矩阵,而   表示的是该雅克比矩阵的F范数的平方,即雅克比矩阵中每个元素求平方 然后求和,更具体的数学表达式为: 关于雅克比矩阵的介绍可参考雅克…
前言: 当采用无监督的方法分层预训练深度网络的权值时,为了学习到较鲁棒的特征,可以在网络的可视层(即数据的输入层)引入随机噪声,这种方法称为Denoise Autoencoder(简称dAE),由Bengio在08年提出,见其文章Extracting and composing robust features with denoising autoencoders.使用dAE时,可以用被破坏的输入数据重构出原始的数据(指没被破坏的数据),所以它训练出来的特征会更鲁棒.本篇博文主要是根据Benig…
主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:00:49 我今天讲PRML的第十二章,连续隐变量.既然有连续隐变量,一定也有离散隐变量,那么离散隐变量是什么?我们可能还记得之前尼采兄讲过的9.2节的高斯混合模型.它有一个K维二值隐变量z,不仅只能取0-1两个值,而且K维中只能有1维为1.其他维必须为0,表示我们观察到的x属于K类中的哪一类.显然,这里的隐变量z就是个离散隐变量.不过我们容易想到,隐变量未必像kmeans或GMM这种聚类算法那样,非此…
起源:自动编码器 单自动编码器,充其量也就是个强化补丁版PCA,只用一次好不过瘾. 于是Bengio等人在2007年的  Greedy Layer-Wise Training of Deep Networks 中, 仿照stacked RBM构成的DBN,提出Stacked AutoEncoder,为非监督学习在深度网络的应用又添了猛将. 这里就不得不提  “逐层初始化”(Layer-wise Pre-training),目的是通过逐层非监督学习的预训练, 来初始化深度网络的参数,替代传统的随机…
起源:PCA.特征提取.... 随着一些奇怪的高维数据出现,比如图像.语音,传统的统计学-机器学习方法遇到了前所未有的挑战. 数据维度过高,数据单调,噪声分布广,传统方法的“数值游戏”很难奏效.数据挖掘?已然挖不出有用的东西. 为了解决高维度的问题,出现的线性学习的PCA降维方法,PCA的数学理论确实无懈可击,但是却只对线性数据效果比较好. 于是,寻求简单的.自动的.智能的特征提取方法仍然是机器学习的研究重点.比如LeCun在1998年CNN总结性论文中就概括了今后机器学习模型的基本架构. 当然…
1前言 本人写技术博客的目的,其实是感觉好多东西,很长一段时间不动就会忘记了,为了加深学习记忆以及方便以后可能忘记后能很快回忆起自己曾经学过的东西. 首先,在网上找了一些资料,看见介绍说UFLDL很不错,很适合从基础开始学习,Adrew Ng大牛写得一点都不装B,感觉非常好,另外对我们英语不好的人来说非常感谢,此教程的那些翻译者们!如余凯等.因为我先看了一些深度学习的文章,但是感觉理解得不够,一般要自己编程或者至少要看懂别人的程序才能理解深刻,所以我根据该教程的练习,一步一步做起,当然我也参考了…
本博客已经迁往http://www.kemaswill.com/, 博客园这边也会继续更新, 欢迎关注~ Contractive Autoencoder(CAE)是Bengio等人在2011年提出的一种新的Autoencoder, 在传统的Autoencoder的重构误差上加上了新的惩罚项, 亦即编码器激活函数对于输入的雅克比矩阵(Jacobian matrix)的Frobenius Norm. CAE的核心思想是尽量捕获训练样本中观察到的variance, 而忽略其他的variance. 鲁棒…
AutoencoderFrom Wikipedia An autoencoder, autoassociator or Diabolo network[1]:19 is an artificial neural network used for learning efficient codings.[2][3] The aim of an auto-encoder is to learn a compressed, distributed representation (encoding) fo…
对于加深网络层数带来的问题,(gradient diffuse  局部最优等)可以使用逐层预训练(pre-training)的方法来避免 Stack-Autoencoder是一种逐层贪婪(Greedy layer-wise training)的训练方法,逐层贪婪的主要思路是每次只训练网络中的一层,即首先训练一个只含一个隐藏层的网络,仅当这层网络训练结束之后才开始训练一个有两个隐藏层的网络,以此类推.在每一步中,把已经训练好的前  层固定,然后增加第  层(也就是将已经训练好的前  的输出作为输入…