声谱预测网络(Tacotron2)】的更多相关文章

整个特征预测网络是一个带有注意力机制(attention)的seq2seq网络. 编码器-解码器(Encoder-Decoder)结构 在原始的编码器-解码器结构中,编码器(encoder)输入一个序列或句子,然后将其压缩到一个固定长度的向量(向量也可以理解为一种形式的序列)中:解码器(decoder)使用固定长度的向量,将其解压成一个序列. 最普遍的方式是使用RNN实现编码器和解码器. 编码器将输入序列映射成固定长度的向量,解码器在生成输出序列阶段,利用注意力机制"关注"向量的不同部…
目录 网络流量预测入门(三)之LSTM预测网络流量 数据集介绍 预测流程 数据集准备 SVR预测 LSTM 预测 优化点 网络流量预测入门(三)之LSTM预测网络流量 在上篇博客LSTM机器学习生成音乐中,介绍了如何使用LSTM生成音乐,而在上上篇网络流量预测入门(二)之LSTM介绍中,介绍了LSTM的基本原理 在这篇博客中,将介绍如何使用SVR和LSTM对网络流量进行预测. LSTM介绍:网络流量预测入门(二)之LSTM介绍.LSTM机器学习生成音乐 An Introduction to Su…
论文地址:Attention is you need 序列编码 深度学习做NLP的方法,基本都是先将句子分词,然后每个词转化为对应的的词向量序列,每个句子都对应的是一个矩阵\(X=(x_1,x_2,...,x_t)\),其中\(x_i\)都代表着第\(i\)个词向量,维度为d维,故\(x\in R^{n×d}\) 第一个基本的思路是RNN层,递归式进行: \[ y_t=f(y_{t-1},x_t) \] RNN结构本身比较简单,也适合序列建模,但RNN明显缺点之一在于无法并行,因而速度较慢,而且…
Kaggle比赛冠军经验分享:如何用 RNN 预测维基百科网络流量 from:https://www.leiphone.com/news/201712/zbX22Ye5wD6CiwCJ.html 导语:来自莫斯科的 Arthur Suilin 在比赛中夺冠并在 github 上分享了他的模型 雷锋网 AI 科技评论按:最近在 Kaggle 上有一场关于网络流量预测的比赛落下帷幕,作为领域里最具挑战性的问题之一,这场比赛得到了广泛关注.比赛的目标是预测 14 万多篇维基百科的未来网络流量,分两个阶…
视觉问题引入深度神经网络后,针对端对端的训练和预测网络,可以看是特征的表达和任务的决策问题(分类,回归等).当我们自己的训练数据量过小时,往往借助牛人已经预训练好的网络进行特征的提取,然后在后面加上自己特定任务的网络进行调优.目前,ILSVRC比赛(针对1000类的分类问题)所使用数据的训练集126万张图像,验证集5万张,测试集10万张(标注未公布),大家一般使用这个比赛的前几名的网络来搭建自己特定任务的神经网络. 本篇博文主要简单讲述怎么使用TensorFlow调用预训练好的VGG网络,其他的…
先说说他们的产品:企业免疫系统(基于异常发现来识别威胁) 可以看到是面向企业内部安全的! 优点整个网络拓扑的三维可视化企业威胁级别的实时全局概述智能地聚类异常泛频谱观测 - 高阶网络拓扑;特定群集,子网和主机事件可搜索的日志和事件重播历史数据设备和外部IP的整体行为的简明摘要专为业务主管和安全分析师设计100%的能见度 企业免疫系统是世界上最先进的网络防御机器学习技术.受到人体免疫系统自我学习智能的启发,这种新技术在复杂和普遍的网络威胁的新时代中,使组织自我保护方式发生了根本转变. 人体免疫系统…
转:https://zr9558.wordpress.com/2013/12/05/科普文:从人人网看网络科学(network-science)的x个经典问/ 长文,写了N个小时写完的.你肯定能看懂,所以希望你能看完,没看完就分享/点赞没有意义.有图有超链接,不建议用手机看.相关内容我想应该可以弄成一个小项目加到某门课中. 网络科学是这两年非常热门的研究方向,具体的研究方向.问题也很多.本文用人人网举几个简单例子,粗浅的说明一下网络科学中的一些经典问题. 社交网络(社会网络)是典型的的复杂网络,…
0. 引言 在这篇文章中,笔者希望和大家讨论一个话题,即未来趋势是否可以被精确或概率性地预测. 对笔者所在的网络安全领域来说,由于网络攻击和网络入侵常常变现出随机性.非线性性的特征,因此纯粹的未来预测是非常困难的.笔者希望通过对2019Nconv疫情的趋势预测问题的研究,搞清楚一个问题,即舆情的数据是否可以预测?如何预测? 同时我们将[疫情预测]和[网络安全的趋势预测]进行横向对比,阐述网络安全领域态势预测的主要技术挑战. 1. 我们为什么需要态势预测 在日益复杂的网络环境和动态变化的攻防场景下…
论文基于关键点预测网络提出CenterNet算法,将检测目标视为关键点,先找到目标的中心点,然后回归其尺寸.对比上一篇同名的CenterNet算法,本文的算法更简洁且性能足够强大,不需要NMS等后处理方法,能够拓展到其它检测任务中   来源:晓飞的算法工程笔记 公众号 论文: Objects as Points 论文地址:https://arxiv.org/abs/1904.07850 论文代码:https://github.com/xingyizhou/CenterNet Introducti…
视频动作定位的分层自关注网络:ICCV2019论文解析 Hierarchical Self-Attention Network for Action Localization in Videos 论文链接: http://openaccess.thecvf.com/content_ICCV_2019/papers/Pramono_Hierarchical_Self-Attention_Network_for_Action_Localization_in_Videos_ICCV_2019_pape…