摘自:https://www.zhihu.com/question/27976634 简单说一下为什么要用EM算法 现在一个班里有50个男生,50个女生,且男生站左,女生站右.我们假定男生的身高服从正态分布 ,女生的身高则服从另一个正态分布: .这时候我们可以用极大似然法(MLE),分别通过这50个男生和50个女生的样本来估计这两个正态分布的参数. 但现在我们让情况复杂一点,就是这50个男生和50个女生混在一起了.我们拥有100个人的身高数据,却不知道这100个人每一个是男生还是女生. 这时候情…
这篇博客整理K均值聚类的内容,包括: 1.K均值聚类的原理: 2.初始类中心的选择和类别数K的确定: 3.K均值聚类和EM算法.高斯混合模型的关系. 一.K均值聚类的原理 K均值聚类(K-means)是一种基于中心的聚类算法,通过迭代,将样本分到K个类中,使得每个样本与其所属类的中心或均值的距离之和最小. 1.定义损失函数 假设我们有一个数据集{x1, x2,..., xN},每个样本的特征维度是m维,我们的目标是将数据集划分为K个类别.假定K的值已经给定,那么第k个类别的中心定义为μk,k=1…
https://applenob.github.io/em.html EM算法总结 在概率模型中,最常用的模型参数估计方法应该就是最大似然法. EM算法本质上也是最大似然,它是针对模型中存在隐变量的情况的最大似然. 下面通过两个例子引入. 没有隐变量的硬币模型 假设有两个硬币,AA和BB,这两个硬币具体材质未知,即抛硬币的结果是head的概率不一定是50%. 在这个实验中,我们每次拿其中一个硬币,抛10次,统计结果. 实验的目标是统计AA和BB的head朝上的概率,即估计θ̂ Aθ^A和θ̂ B…
最近看斯坦福大学的机器学习课程,空下来总结一下参数估计相关的算法知识. 一.极大似然估计: 大学概率论课程都有讲到参数估计的两种基本方法:极大似然估计.矩估计.两种方法都是利用样本信息尽量准确的去描述总体信息,或者说给定模型(参数全部或者部分未知)和数据集(样本),让我们去估计模型的未知参数. 其中,矩估计依赖于辛钦大数定律:简单随机样本的原点矩依概率收敛到相应的总体原点矩,这就启发我们利用样本矩替换总体矩(最简单的是用一阶样本原点矩估计总体期望,而用二阶样本中心矩估计总体方差),其一大优点就是…
一.极大似然已经发生的事件是独立重复事件,符合同一分布已经发生的时间是可能性(似然)的事件利用这两个假设,已经发生时间的联合密度值就最大,所以就可以求出总体分布f中参数θ 用极大似然进行机器学习有监督学习:最大熵模型无监督学习:GMM 二.熵和信息自信息i(x) = -log(p(x)) 信息是对不确定性的度量.概率是对确定性的度量,概率越大,越确定,可能性越大.信息越大,越不确定. 熵是对平均不确定性的度量.熵是随机变量不确定性的度量,不确定性越大,熵值越大.H(x) = -∑p(x)log⁡…
1. 通过一个简单的例子直观上理解EM的核心思想 0x1: 问题背景 假设现在有两枚硬币Coin_a和Coin_b,随机抛掷后正面朝上/反面朝上的概率分别是 Coin_a:P1:-P1 Coin_b:P2:-P2 为了估计这个概率(我们事先是不知道这两枚硬币正面朝上的概率的),我们需要通过实验法来进行最大似然估计,每次取一枚硬币,连掷5下,记录下结果 硬币 结果 统计 Coin_a 正 正 反 正 反 3正-2反 Coin_b 反 反 正 正 反 2正-3反 Coin_a 正 反 反 反 反 1…
https://blog.csdn.net/zhihua_oba/article/details/73776553 EM算法(Expectation Maximization Algorithm)详解 主要内容 EM算法简介 预备知识  极大似然估计 Jensen不等式 EM算法详解  问题描述 EM算法推导 EM算法流程 1.EM算法简介   EM算法是一种迭代优化策略,由于它的计算方法中每一次迭代都分两步,其中一个为期望步(E步),另一个为极大步(M步),所以算法被称为EM算法(Expect…
EM算法浅析,我准备写一个系列的文章: EM算法浅析(一)-问题引出 EM算法浅析(二)-算法初探 一.EM算法简介 在EM算法之一--问题引出中我们介绍了硬币的问题,给出了模型的目标函数,提到了这种含隐变量的极大似然估计要用EM算法解决,继而罗列了EM算法的简单过程,当然最后看到EM算法时内心是懵圈的,我们也简要的分析了一下,希望你在看了前一篇文章后,能大概知道E步和M步的目的和作用.为了加深一下理解,我们回过头来,重新看下EM算法的简单介绍: 输入:观测变量数据Y,隐变量数据Z,联合分布$P…
猴子吃果冻 博客园 首页 新随笔 联系 管理 订阅 随笔- 35  文章- 0  评论- 3  4-EM算法原理及利用EM求解GMM参数过程   1.极大似然估计 原理:假设在一个罐子中放着许多白球和黑球,并假定已经知道两种球的数目之比为1:3但是不知道那种颜色的球多.如果用放回抽样方法从罐中取5个球,观察结果为:黑.白.黑.黑.黑,估计取到黑球的概率为p; 假设p=1/4,则出现题目描述观察结果的概率为:(1/4)4 *(3/4) = 3/1024 假设p=3/4,则出现题目描述观察结果的概率…
1 数学基础 在实际中,最小化的函数有几个极值,所以最优化算法得出的极值不确实是否为全局的极值,对于一些特殊的函数,凸函数与凹函数,任何局部极值也是全局极致,因此如果目标函数是凸的或凹的,那么优化算法就能保证是全局的. 凸集:在凸几何中,凸集(convex set)是在凸组合下闭合的仿射空间的子集.更具体地说,在欧氏空间中,凸集是对于集合内的每一对点,连接该对点的直线段上的每个点也在该集合内.例如,立方体是凸集,但是任何中空的或具有凹痕的例如月牙形都不是凸集.特别的,凸集,实数R上(或复数C上)…