Lecture2 Linear regression with one variable 单变量线性回归 2.1 模型表示 Model Representation 2.1.1 线性回归 Linear regression 2.1.2 单变量线性回归 Linear regression with one variable 2.2 代价函数 Cost Function 2.2.1 如何选择模型的参数 θ 2.2.2 建模误差 modeling error 2.2.3 平方误差代价函…
Lecture 4 Linear Regression with Multiple Variables 多变量线性回归 4.1 多维特征 Multiple Features4.2 多变量梯度下降 Gradient Descent for Multiple Variables4.3 梯度下降法实践 1-特征缩放 Gradient Descent in Practice I - Feature Scaling4.4 梯度下降法实践 2-学习率 Gradient Descent in Practice…
上节课我们主要介绍了解决线性分类问题的一个简单的方法:PLA.PLA能够在平面中选择一条直线将样本数据完全正确分类.而对于线性不可分的情况,可以使用Pocket Algorithm来处理.本节课将主要介绍一下机器学习有哪些种类,并进行归纳. 一.Learning with Different Output Space Y(根据输入空间变化划分) 银行根据用户个人情况判断是否给他发信用卡的例子,这是一个典型的二元分类(binary classification)问题.也就是说输出只有两个,一般y=…
上节课介绍了机器学习可以分为不同的类型.其中,监督式学习中的二元分类和回归分析是最常见的也是最重要的机器学习问题.本节课,我们将介绍机器学习的可行性,讨论问题是否可以使用机器学习来解决. 一.Learning is Impossible 首先,考虑这样一个例子,如下图所示,有3个label为-1的九宫格和3个label为+1的九宫格.根据这6个样本,提取相应label下的特征,预测右边九宫格是属于-1还是+1?结果是,如果依据对称性,我们会把它归为+1:如果依据九宫格左上角是否是黑色,我们会把它…