SparkStreaming基本架构及使用】的更多相关文章

1.简介 Spark Streaming处理的数据流图: Spark Streaming在内部的处理机制是,接收实时流的数据,并根据一定的时间间隔拆分成一批批的数据,然后通过Spark Engine处理这些批数据,最终得到处理后的一批批结果数据. 对应的批数据,在Spark内核对应一个RDD实例,因此,对应流数据的DStream可以看成是一组RDDs,即RDD的一个序列.通俗点理解的话,在流数据分成一批一批后,通过一个先进先出的队列,然后 Spark Engine从该队列中依次取出一个个批数据,…
图 1   Spark Streaming 架构图 组件介绍:‰ Network Input Tracker : 通 过 接 收 器 接 收 流 数 据, 并 将 流 数 据 映 射 为 输 入DStream.‰ Job Scheduler :周期性地查询 DStream 图,通过输入的流数据生成 Spark Job,将 Spark Job 提交给 Job Manager 进行执行.‰ JobManager:维护一个 Job 队列,将队列中的 Job 提交到 Spark 进行执行. 通 过 图…
Spark Streaming揭秘 Day22 架构源码图解 今天主要是通过图解的方式,对SparkStreaming的架构进行一下回顾. 下面这个是其官方标准的流程描述. SparkStreaming会源源不断的接收数据源,然后根据时间切割成不同的Batch,每个Batch都会产生RDD,RDD运行在Spark的引擎之上,处理会产生运行的结果. 我们对其进行细化,可以分解为8个步骤: Step1:获取外部数据源,最经典的来源于Kafka,其它例如Flume.数据库.HBase等 Step2.3…
本课将从二方面阐述: 一.解密SparkStreaming Job架构和运行机制 二.解密SparkStreaming容错架构和运行机制 一切不能进行实时流处理的数据都将是无效的数据.在流处理时代,SparkStreaming有着强大吸引力,加上Spark的生态系统及各个子框架,SparkStreaming可以无缝的调用其兄弟框,如SQL,MLlib.Graphx等.掌握SparkStreaming架构及Job运行机制对精通SparkStreaming至关重要.通常的Spark应用程序是对RDD…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .运行环境说明 1.1 硬软件环境 线程,主频2.2G,10G内存 l  虚拟软件:VMware® Workstation 9.0.0 build-812388 l  虚拟机操作系统:CentOS 64位,单核 l  虚拟机运行环境: Ø  JDK:1.7.0_55 64位 位) Ø  Scala:2.10.4 Ø  Spark:1.1.0(需要编译) Ø  Hive:0.13.1 1.2 机器网络…
http://blog.csdn.net/book_mmicky/article/details/39288715 2014年9月11日,Spark1.1.0忽然之间发布.笔者立即下载.编译.部署了Spark1.1.0.关于Spark1.1的编译和部署,请参看笔者博客Spark1.1.0 源码编译和部署包生成 .       Spark1.1.0中变化较大是sparkSQL和MLlib,sparkSQL1.1.0主要的变动有: 增加了JDBC/ODBC Server(ThriftServer),…
SparkStreaming是架构在SparkCore上的一个"应用",SparkStreaming主要由DStreamGraph.Job的生成.数据的接收和导入以及容错四大模块组成,我们今天就从这四大模块入手,看看每个模块都有什么样的调优方式 1 DStreamGraph 其实这部分主要是算子的使用优化,这个跟Spark调优的内容是相同,在这一部分可以优化的内容有 重复使用的rdd进行cache 使用高性能的算子代替性能差的算子 reduceByKey\aggregateByKey代…
此文已由作者岳猛授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 2.Spark Streaming架构及特性分析 2.1 基本架构 基于是spark core的spark streaming架构. Spark Streaming是将流式计算分解成一系列短小的批处理作业.这里的批处理引擎是Spark,也就是把Spark Streaming的输入数据按照batch size(如1秒)分成一段一段的数据(Discretized Stream),每一段数据都转换成Spark中的…
SparkStreaming是一个对实时数据流进行高通量.容错处理的流式处理系统,可以对多种数据源(如Kdfka.Flume.Twitter.Zero和TCP 套接字)进行类似Map.Reduce和Join等复杂操作,并将结果保存到外部文件系统.数据库或应用到实时仪表盘.➢ 计算流程➢ 容错性➢ 实时性➢ 扩展性与吞吐量…
Spark Streaming揭秘 Day19 架构设计和运行机制 今天主要讨论一些SparkStreaming设计的关键点,也算做个小结. DStream设计 首先我们可以进行一个简单的理解:DStream就是加上时间维度的RDD.RDD的模板是DStream,DAG的模板是DStreamGraph,RDD的依赖关系就是DStream的依赖关系. 但是,从DStream的设计来看,我们会发现,DStream的操作和RDD并不是一一对应的,DStream并不直接支持join.orderBy等操作…