BZOJ 4671 异或图 | 线性基 容斥 DFS】的更多相关文章

题面 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中, 否则这条边不在 G 中. 现在给定 s 个结点数相同的图 G1...s, 设 S = {G1, G2, . . . , Gs}, 请问 S 有多少个子集的异 或为一个连通图? Input 第一行为一个整数s, 表图的个数. 接下来每一个二进制串, 第 i 行的二进制串为 gi, 其中 gi 是原…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 考虑计算不是连通图的方案,乘上容斥系数来进行容斥. 可以枚举子集划分(复杂度是O(Bell)).就是 dfs ,记录已经有了几个集合,枚举当前元素放在哪个集合里(给它标一个 id )或者当前元素自己开一个集合. 然后就有了限制:不同点集之间不能有边.本来想限制同一点集必须是连通的,但不好限制,所以就不限制了,把这部分的影响算在容斥系数里. 如果限制不同点集之间不能有边,可以考虑高斯消…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方案数: 我们希望得到恰好有一个连通块的方案数,但这里不能直接 \( + t[1] - t[2] + t[3] - t[4] ... \),因为每个“恰好 \( i \) 个连通块”的情况并不是在各种 \( t[j] ( j<=i ) \) 中只被算了一次,而是因为标号,被算了 \( S(i,j) \…
题目描述 定义两个图\(G_1\)与\(G_2\)的异或图为一个图\(G\),其中图\(G\)的每条边在\(G_1\)与\(G_2\)中出现次数和为\(1\). 给你\(m\)个图,问你这\(m\)个图组成的集合有多少个子集的异或图为一个连通图. \(n\leq 10,m\leq 60\) 题解 考虑枚举图的子集划分,让被划分到不同子集的点之间没有连边,而在同一个子集里面的点可以连通,可以不连通. 可以用高斯消元(线性基)得到满足条件的图的个数.设枚举的子集划分有\(k\)个集合,那么容斥系数就…
Description 题库链接 给定 \(s\) 个结点数相同且为 \(n\) 的图 \(G_1\sim G_s\) ,设 \(S = \{G_1, G_2,\cdots , G_s\}\) ,问 \(S\) 有多少个子集的异或为一个连通图. \(1\leq n\leq 10,1\leq s\leq 60\) Solution 不妨记 \(f_x\) 为连通块个数至少为 \(x\) 的方案数, \(g_x\) 为连通块恰好为 \(x\) 的方案数. 容易得到: \[f_x=\sum_{i=x}…
题解 写完之后开始TTTTTTT--懵逼 这道题我们考虑一个东西叫容斥系数啊>< 这个是什么东西呢 也就是\(\sum_{i = 1}^{m}\binom{m}{i}f_{i} = [m = 1]\) 也就是说,我们求出m个系数,让这个式子只在[m = 1]的时候为1,其余时候为0 啥玩意啊怎么求啊 我们显然可以\(n^2\)的递推求出来,类似解方程 但是我们打个表就会发现是\(f_{i} = (-1)^{i - 1}(i - 1)!\) 然后我们再考虑这个式子的容斥意义,假如一个图有m个联通…
题目链接 题意 给定一个 \(n(n\le 50000)\) 个点 \(m(m\le 100000)\) 条边的无向图,每条边上有一个权值.请你求一条从 \(1\)到\(n\)的路径,使得路径上的边的异或和最大. 题解 参考 https://blog.sengxian.com/algorithms/linear-basis 结论 答案=\(max_\{\)(某一条\(1\)到\(n\)的路径的异或和)\(\oplus\)(环\(i_1\)的异或和)\(\oplus\)(环\(i_2\)的异或和)…
4568: [Scoi2016]幸运数字 题意:一颗带点权的树,求树上两点间异或值最大子集的异或值 显然要用线性基 可以用倍增的思想,维护每个点向上\(2^j\)个祖先这些点的线性基,求lca的时候合并起来就行了 复杂度\(O(nlogn60*60)\) 注意这是点权,特判x==y的情况,需要插入a[x] 还可以用点分治和树链剖分 我的代码好慢啊...但是很好写啊 #include <iostream> #include <cstdio> #include <algorith…
国际惯例的题面:异或凑出一个数,显然是线性基了.显然我们能把区间[l,r]的数全都扔进一个线性基,然后试着插入w,如果能插入,则说明w不能被这些数线性表出,那么就要输出"NO"了.然而怎么得到这个线性基?我们有两种很显然的暴力:线段树和单调莫队.然而亲测它们都不能AC......(不排除我写丑了)考虑思考一下性质:如果我们能对于每个结束位置,用这个位置前面尽可能靠后的数构造出一个线性基,那么我们查询的时候是不是就能取出结束位置为r的线性基限制用的数出现位置不能早于l,然后直接查询就好了…
题目描述 给由 $n​$ 个数组成的一个可重集 $S​$ ,每次给定一个数 $k​$ ,求一个集合 $T⊆S​$ ,使得集合 $T​$ 在 $S​$ 的所有非空子集的不同的异或和中,其异或和 $T_1\ \text{xor}\ T_2\ \text{xor}\ …\ \text{xor}\ T_{|T|}​$ 是第 $k​$ 小的.求这个第 $k$ 小的异或和. 题解 线性基+特判 板子题没什么好说的,直接求出严格线性基,由于每个最高位只有一个因此按位判断即可. 关键在于一个特判:原来的可重集可…