DTW】的更多相关文章

                          dtw路径与线性变换路径对比 转自:http://baike.baidu.com/link?url=z4gFUEplOyqpgboea6My0mZPBh3_sZZpk6EfpzwuZ16uMlyPl7utZQi-XNkotLzLrGih9zUFNG4_tygNg8khiK 在孤立词语音识别中,最为简单有效的方法是采用DTW(Dynamic Time Warping,动态时间归整)算法,该算法基于动态规划(DP)的思想,解决了发音长短不一的模板匹…
动态时间规整DTW   在日常的生活中我们最经常使用的距离毫无疑问应该是欧式距离,但是对于一些特殊情况,欧氏距离存在着其很明显的缺陷,比如说时间序列,举个比较简单的例子,序列A:1,1,1,10,2,3,序列B:1,1,1,2,10,3,如果用欧氏距离,也就是distance[i][j]=(b[j]-a[i])*(b[j]-a[i])来计算的话,总的距离和应该是128,应该说这个距离是非常大的,而实际上这个序列的图像是十分相似的,这种情况下就有人开始考虑寻找新的时间序列距离的计算方法,然后提出了…
Dynamic Time Warping(DTW)诞生有一定的历史了(日本学者Itakura提出),它出现的目的也比较单纯,是一种衡量两个长度不同的时间序列的相似度的方法.应用也比较广,主要是在模板匹配中,比如说用在孤立词语音识别(识别两段语音是否表示同一个单词),手势识别,数据挖掘和信息检索等中. 一.概述 在大部分的学科中,时间序列是数据的一种常见表示形式.对于时间序列处理来说,一个普遍的任务就是比较两个序列的相似性. 在时间序列中,需要比较相似性的两段时间序列的长度可能并不相等,在语音识别…

DTW

DTW主要是应用在孤立词识别的算法,用来识别一些特定的指令比较好用,这个算法是基于DP(动态规划)的算法基础上发展而来的.这里介绍语音识别就先介绍下语音识别的框架,首先我们要有一个比对的模版声音,然后需要去截取其里面包含真正属于语音的部分,这个要采用一个叫做vad(voice activedetection)语音活动检测的算法,而在vad中间我们最常使用双门限端点检测这种方法,如图所示,我们采用vad判断语音的开始和结束,判断方法就是通过音量的大小做一个阈值判定,在时域上很简单就能判定. 图.s…
本系列介绍几种序列对齐方法,包括Dynamic time warping (DTW),Smith–Waterman algorithm,Cross-recurrence plot Dynamic time warping (DTW) is a well-known technique to find an optimal alignment between two given (time-dependent) sequences under certain restrictions. ——Mei…
DTW(动态时间调整) 动态时间调整算法是大多用于检测两条语音的相似程度,由于每次发言,每个字母发音的长短不同,会导致两条语音不会完全的吻合,动态时间调整算法,会对语音进行拉伸或者压缩,使得它们竟可能的对齐. 如上图红圈标注的位置,可以发现下面那条线中有许多的点与之对应,如果换成一个个离散的点表示的话,实际上是对上一条曲线该点进行了拉伸处理,使得它们最大化对齐. 最近在研究时间序列的问题,时间序列类似这个.假如我想计算两条天气的时间序列是否相似,由于时间序列有的时候会出现延迟的现象,导致两条时间…
目录 1.基本介绍 2.算法原理(理论原理) 2.1 主要术语 2.2 算法由来和改进过程 2.3 DTW算法流程 3.算法DTW和算法HMM的比较 1.基本介绍 DTW:Dynamic Time Warping,即动态时间归整.DTW算法基于DP动态规划思想,解决了发音长短不一的模板匹配问题,常用于语音识别(孤立词识别). HMM算法在训练阶段需要提供大量的语音数据,通过反复急速那才能得到模型参数:而DTW算法的训练中几乎不需要额外的计算.因此DTW算法得到了广泛使用. 2.算法原理(理论原理…
# -*- coding: utf-8 -*- """ Created on Tue Dec 4 08:53:08 2018 @author: zhen """ from dtw import fastdtw import matplotlib.pyplot as plt import numpy as np import pandas as pd import threading import time from datetime import…
在大部分的学科中,时间序列是数据的一种常见表示形式.对于时间序列处理来说,一个普遍的任务就是比较两个序列的相似性. 在时间序列中,需要比较相似性的两段时间序列的长度可能并不相等,在语音识别领域表现为不同人的语速不同.因为语音信号具有相当大的随机性,即使同一个人 在不同时刻发同一个音,也不可能具有完全的时间长度.而且同一个单词内的不同音素的发音速度也不同,比如有的人会把“A”这个音拖得很长,或者把“i”发的很短.在这些复杂情况下,使用传统的欧几里得距离无法有效地求的两个时间序列之间的距离(或者相似…
语音信号处理之(一)动态时间规整(DTW) zouxy09@qq.com 原文:http://blog.csdn.net/zouxy09 这学期有<语音信号处理>这门课,快考试了,所以也要了解了解相关的知识点.呵呵,平时没怎么听课,现在只能抱佛脚了.顺便也总结总结,好让自己的知识架构清晰点,也和大家分享下.下面总结的是第一个知识点:DTW.因为花的时间不多,所以可能会有不少说的不妥的地方,还望大家指正.谢谢. Dynamic Time Warping(DTW)诞生有一定的历史了(日本学者Ita…
作者:桂. 时间:2017-05-31  16:17:29 链接:http://www.cnblogs.com/xingshansi/p/6924911.html 前言 动态时间规整(Dynamic Time Warping,DTW)是孤立词识别的早期技术,梳理一下,主要包括: 1)孤立词识别操作步骤; 2)DTW原理; 内容基本就是两个博文的整合,最后一并给出链接. 一.孤立词识别操作步骤 基本原理: 基本操作是预加重.分帧,端点检测技术又叫有话帧检测(Voice activity detec…
动态时间规整DTW(Dynamic Time Warping ) 原文:https://blog.csdn.net/raym0ndkwan/article/details/45614813 算法笔记-DTW动态时间规整 简介 简单的例子 定义 讨论 约束条件 步模式 标准化 点与点的距离函数 具体应用场景 分类 点到点匹配 算法笔记-DTW动态时间规整动态时间规整/规划(Dynamic Time Warping, DTW)是一个比较老的算法,大概在1970年左右被提出来,最早用于处理语音方面识别…
这学期有<语音信号处理>这门课,快考试了,所以也要了解了解相关的知识点.呵呵,平时没怎么听课,现在只能抱佛脚了.顺便也总结总结,好让自己的知识架构清晰点,也和大家分享下.下面总结的是第一个知识点:DTW.因为花的时间不多,所以可能会有不少说的不妥的地方,还望大家指正.谢谢. Dynamic Time Warping(DTW)诞生有一定的历史了(日本学者Itakura提出),它出现的目的也比较单纯,是一种衡量两个长度不同的时间序列的相似度的方法.应用也比较广,主要是在模板匹配中,比如说用在孤立词…
DTW为(Dynamic Time Warping,动态时间归准)的简称.应用很广,主要是在模板匹配中,比如说用在孤立词语音识别,计算机视觉中的行为识别,信息检索等中.可能大家学过这些类似的课程都看到过这个算法,公式也有几个,但是很抽象,当时看懂了但不久就会忘记,因为没有具体的实例来加深印象. 这次主要是用语音识别课程老师上课的一个题目来理解DTW算法. 首先还是介绍下DTW的思想:假设现在有一个标准的参考模板R,是一个M维的向量,即R={R(1),R(2),……,R(m),……,R(M)},每…
动态时间规整DTW 1 概述 动态时间规整是一个计算时间序列之间距离的算法,是为了解决语音识别领域中语速不同的情况下如何计算距离相似度的问题. 相对于用经典的欧式距离来计算相似度而言,DTW在数据点个数不对齐的情况下微调时间从而能够计算距离. DTW之所以能够计算数据点个数不同时间序列之间的距离,是因为DTW方法中时间序列的点可以一对多. 2 计算过程 用动态规划算法计算DTW距离的过程如下所示,计算不同长度时间序列T和R之间的距离(假设T.R长度分别为m.n).图中每一个小方格中粗体值是两两点…
对时序对象进行分析,使用KMP算法可以分析速率不变的模式,参考时序分析:欧式空间轨迹模式识别.使用基于模板匹配的方法,对于速率发生变化的模式,需要用新的对速率要求松散的方法,DTW方法为一种广泛使用的方法. 此外,基于模板的方法也有MEI方法(Measured Equation of invariance).MHI方法(OpenCV使用了-Forward-Backward MHI (before and after the historical figure to the movement)即前…
语音信号处理之(一)动态时间规整(DTW) zouxy09@qq.com http://blog.csdn.net/zouxy09 这学期有<语音信号处理>这门课,快考试了,所以也要了解了解相关的知识点.呵呵,平时没怎么听课,现在只能抱佛脚了.顺便也总结总结,好让自己的知识架构清晰点,也和大家分享下.下面总结的是第一个知识点:DTW.因为花的时间不多,所以可能会有不少说的不妥的地方,还望大家指正.谢谢. Dynamic Time Warping(DTW)诞生有一定的历史了(日本学者Itakur…
DTW(动态时间弯折)算法原理:基于动态规划(DP)的思想,解决发音长短不一的模板匹配问题.相比HMM模型算法,DTW算法的训练几乎不需要额外的计算.所以在孤立词语音识别中,DTW算法仍得到广泛的应用. 在训练和识别阶段,首先采用端点检测算法确定语音的起点和终点.对于参考模板{R(1),R(2),-,R(m),-,R(M)},R(m)为第m帧的语音特征矢量.对于测试模板{T(1),T(2),-,T(n),-,T(N)},T(n)为测试模板的第n帧的语音特征矢量.参考模板与测试模板一般采用类型的特…
DTW主要是应用在孤立词识别的算法,用来识别一些特定的指令比较好用,这个算法是基于DP(动态规划)的算法基础上发展而来的.这里介绍语音识别就先介绍下语音识别的框架,首先我们要有一个比对的模版声音,然后需要去截取其里面包含真正属于语音的部分,这个要采用一个叫做vad(voice activedetection)语音活动检测的算法,而在vad中间我们最常使用双门限端点检测这种方法,如图所示,我们采用vad判断语音的开始和结束,判断方法就是通过音量的大小做一个阈值判定,在时域上很简单就能判定. 图.s…
1.  from here. diagonalReturn specified diagonals. diagflatCreate a 2-D array with the flattened input as a diagonal. traceSum along diagonals. triuUpper triangle of an array. trilLower triangle of an array. 2. DTW distance. dtaidistance from dtaidis…
时间序列相似性度量方法 时间序列相似性度量常用方法为欧氏距离ED(Euclidean distance)和动态时间规整DTW(Dynamic Time Warping).总体被分为两类: 锁步度量(lock-step measures) 和弹性度量(elastic measures) .锁步度量是时间序列进行 "一对一"的比 较; 弹性度量允许时间序列进行 "一对多"的比较. 欧氏距离属于锁步度量. 在时间序列中,我们通常需要比较两端音频的差异.而两段音频的长度大部…
1.缩小搜索范围 2.降低内存消耗…
参考: https://www.cnblogs.com/Daringoo/p/4095508.html…
参考: https://blog.csdn.net/raym0ndkwan/article/details/45614813…
想要容易理解核心的特征计算的话建议先去看看我之前的听歌识曲的文章,传送门:http://www.cnblogs.com/chuxiuhong/p/6063602.html 本文主要是实现了一个简单的命令词识别程序,算法核心一是提取音频特征,二是用DTW算法进行匹配.当然,这样的代码肯定不能用于商业化,大家做出来玩玩娱乐一下还是不错的. 转载请保留本文链接,谢谢. 设计思路 就算是个小东西,我们也要先明确思路再做.音频识别,困难不小,其中提取特征的难度在我听歌识曲那篇文章里能看得出来.而语音识别难…
听歌识曲,顾名思义,用设备"听"歌曲,然后它要告诉你这是首什么歌.而且十之八九它还得把这首歌给你播放出来.这样的功能在QQ音乐等应用上早就出现了.我们今天来自己动手做一个自己的听歌识曲 我们设计的总体流程图很简单: 录音部分 我们要想"听",就必须先有录音的过程.在我们的实验中,我们的曲库也要用我们的录音代码来进行录音,然后提取特征存进数据库.我们用下面这样的思路来录音 # coding=utf8 import wave import pyaudio class r…
回到目录 一般sso的说明 在Lind.DDD框架里,有对单点登陆的集成,原理就是各个网站去sso网站统一登陆授权,之后在sso网站将登陆的token进行存储,存储方式随你(cache,redis,mongodb,file),之后业务平台在访问资源时,如果这些资源需要用户登陆才能访问,就会去sso网站取token,再根据token去凭证,然后将cookies(由sso域名+token值组成)存储到自己浏览器的cookies里,同时在自己的业务平台也存储的登陆状态,当退出后,将sso上存储的信息清…
两种方式Range和ROI #include <opencv2/opencv.hpp> using namespace std; using namespace cv; void testrange(Mat &img) { int m = img.rows; int n = img.cols; Mat temp = img(Range(,m*,n*0.8)); namedWindow("Range"); imshow("Range", temp)…
1.前言 身处在移动互联网的今天,移动应用开发炙手可热,身为程序猿的我们怎么能错过开发一款我们自己的APP.本人算是一个基于.net的GIS开发入门者(马上就大四啦), 暑假在学校参加GIS比赛有大把的时间,利用最近这两天自己写了一个跨平台移动APP.功能比较简单,以后我会慢慢完善的.为什么要跨平台呢?大学期间主要学.net,而微软不太给力啦,WP开发基本上已近死啦 .而重新学习Android开发比较吃力费时.由于对HTML.JavaScript与CSS 等 Web 技术开发有所了解,最终选择使…
1.前言 这是本系列的第四篇文章,上一篇我们讲到实现了客户端对客户端的抖屏与收发各种类型文件,本篇文章我们加入SQLServer数据库实现登录与好友的添加等功能,并对界面做了美化处理.向往常一样我会把聊天服务器部署到广域网服务器上,到时候大家就可以可以在源码里面打开客户端与我聊天啦!(这只是一个初级版功能简单不支持离线消息,所以聊天的前提是我在线(用户ID为19931221,就是我啦.)……),也可以自己打开两个客户端测试一下,程序的部署文档放在我的源码根目录下. 2.本篇实现功能 0. 数据库…