背景 之前所讨论的SVM都是非常严格的hard版本,必须要求每个点都被正确的区分开.但是,实际情况时很少出现这种情况的,因为噪声数据时无法避免的.所以,需要在hard SVM上添加容错机制,使得可以容忍少量噪声数据.   "软"化问题 软化SVM的思路有点类似正规化,在目标函数添加错误累加项,然后加一个系数,控制对错误的容忍度,并且在约束中添加错误容忍度的约束,形式如下:   现在问题就变成了(d+1+N)个变量和2N个约束.ξ用来描述错误的容忍度.C是常量,用来控制容忍度.C越大,由…
背景 支持向量机(SVM)背后的数学知识比较复杂,之前尝试过在网上搜索一些资料自学,但是效果不佳.所以,在我的数据挖掘工具箱中,一直不会使用SVM这个利器.最近,台大林轩田老师在Coursera上的机器学习技法课程上有很详细的讲授SVM的原理,所以机会难得,一定要好好把握这次机会,将SVM背后的原理梳理清楚并记录下来.这篇文章总结第一讲linear hard SVM的相关内容.     最好的分割线 之前有讲过PLA,即在线性可分的数据中,找到一条线,能够区分开正负样本,如下所示: 上面三条线,…
极其淡腾的一学期终于过去了,暑假打算学下台大的这门机器学习技法. 第一课是对SVM的介绍,虽然之前也学过,但听了一次感觉还是很有收获的.这位博主总结了个大概,具体细节还是 要听课:http://www.cnblogs.com/bourneli/p/4198839.html 这位博主总结的很详细:http://www.cnblogs.com/xbf9xbf/p/4617120.html 这节课提出了一个重要的概念--maxmum margin(它和hinge loss是线性SVM最重要的两个部分)…
背景 上一讲从对偶问题的角度描述了SVM问题,但是始终需要计算原始数据feature转换后的数据.这一讲,通过一个kernel(核函数)技巧,可以省去feature转换计算,但是仍然可以利用feature转换的特性.   什么是kernel Kernel的其实就是将向量feature转换与点积运算合并后的运算,如下, 概念上很简单,但是并不是所有的feature转换函数都有kernel的特性.   Kernel化的SVM 在对偶化的SVM解中,有三个地方会使用到kernel 计算截距b 计算QP…
背景 上一篇文章总结了linear hard SVM,解法很直观,直接从SVM的定义出发,经过等价变换,转成QP问题求解.这一讲,从另一个角度描述hard SVM的解法,不那么直观,但是可以避免feature转换时的数据计算,这样就可以利用一些很高纬度(甚至是无限维度)的feature转换,得到一些更精细的解.   拉格朗日乘子式 首先,回顾一下SVM问题的定义,如下: 线性约束很烦,不方便优化,是否有一种方法可以将线性约束放到优化问题本身,这样就可以无拘无束的优化,而不用考虑线性约束了.拉格朗…
机器学习实战(Machine Learning in Action)学习笔记————04.朴素贝叶斯分类(bayes) 关键字:朴素贝叶斯.python.源码解析作者:米仓山下时间:2018-10-25机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.com:pbharrin/ma…
# TensorFlow机器学习框架-学习笔记-001 ### 测试TensorFlow环境是否安装完成-----------------------------```import tensorflow as tf hello = tf.constant('Hello,TensorFlow!')sess = tf.Session()print(sess.run(hello))```…
SaToken学习笔记-04 如果有问题,请点击:传送门 角色认证 在sa-token中,角色和权限可以独立验证 // 当前账号是否含有指定角色标识, 返回true或false StpUtil.hasRole("super-admin"); // 当前账号是否含有指定角色标识, 如果验证未通过,则抛出异常: NotRoleException StpUtil.checkRole("super-admin"); // 当前账号是否含有指定角色标识 [指定多个,必须全部验…
Redis:学习笔记-04 该部分内容,参考了 bilibili 上讲解 Redis 中,观看数最多的课程 Redis最新超详细版教程通俗易懂,来自 UP主 遇见狂神说 10. Redis主从复制 10.1 概念 主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器.前者称为主节点(master/leader),后者称为从节点(slave/follower): 数据的复制是单向的,只能由主节点到从节点: Master以写为主,Slave 以读为主: 默认情况下,每台Redis…
feature_selection模块 Univariate feature selection:单变量的特征选择 单变量特征选择的原理是分别单独的计算每个变量的某个统计指标,根据该指标来判断哪些指标重要.剔除那些不重要的指标.   sklearn.feature_selection模块中主要有以下几个方法: SelectKBest和SelectPercentile比较相似,前者选择排名排在前n个的变量,后者选择排名排在前n%的变量.而他们通过什么指标来给变量排名呢?这需要二外的指定. 对于re…