Redis.MongoDB及Memcached的区别 Redis(内存数据库) 是一个key-value存储系统(布式内缓存,高性能的key-value数据库).和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合).zset(sorted set --有序集合)和hash(哈希类型).这些数据类型都支持push/pop.add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的.在此基础上,redis支持各…
Redis(内存数据库) 是一个key-value存储系统(布式内缓存,高性能的key-value数据库).和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合).zset(sorted set --有序集合)和hash(哈希类型).这些数据类型都支持push/pop.add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的.在此基础上,redis支持各种不同方式的排序.与memcached一样,为了保证效…
redis和memcached的区别   Redis 和 Memcache 都是基于内存的数据存储系统.Memcached是高性能分布式内存缓存服务:Redis是一个开源的key-value存储系统.与Memcached类似,Redis将大部分数据存储在内存中,支持的数据类型包括:字符串.哈希 表.链表.等数据类型的相关操作.下面我们来进行来看一下redis和memcached的区别. 权威比较 Redis的作者Salvatore Sanfilippo曾经对这两种基于内存的数据存储系统进行过比较…
Redis是一个开源(BSD许可),内存存储的数据结构服务器,可用作数据库,高速缓存和消息队列代理. Memcached是一个自由开源的,高性能,分布式内存对象缓存系统. MongoDB是一个基于分布式文件存储的数据库,文档型的非关系型数据库,与上面两者不同. 1.性能上:      性能上都很出色,具体到细节,由于Redis只使用单核,而Memcached可以使用多核,所以平均每一个核上Redis在存储小数据时比Memcached性能更高.而在100k以上的数据中,Memcached性能要高于…
Redis与Memcached的区别 传统MySQL+ Memcached架构遇到的问题 实际MySQL是适合进行海量数据存储的,通过Memcached将热点数据加载到cache,加速访问,很多公司都曾经使用过这样的架构,但随着业务数据量的不断增加,和访问量的持续增长,我们遇到了很多问题: 1.MySQL需要不断进行拆库拆表,Memcached也需不断跟着扩容,扩容和维护工作占据大量开发时间. 2.Memcached与MySQL数据库数据一致性问题. 3.Memcached数据命中率低或down…
mongodb和memcached不是一个范畴内的东西.mongodb是文档型的非关系型数据库,其优势在于查询功能比较强大,能存储海量数据.mongodb和memcached不存在谁替换谁的问题. 和memcached更为接近的是redis.它们都是内存型数据库,数据保存在内存中,通过tcp直接存取,优势是速度快,并发高,缺点是数据类型有限,查询功能不强,一般用作缓存.在我们团队的项目中,一开始用的是memcached,后来用redis替代. 相比memcached: 1.redis具有持久化机…
观点一: 1.Redis和Memcache都是将数据存放在内存中,都是内存数据库.不过memcache还可用于缓存其他东西,例如图片.视频等等: 2.Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储: 3.虚拟内存--Redis当物理内存用完时,可以将一些很久没用到的value 交换到磁盘: 4.过期策略--memcache在set时就指定,例如set key1 0 0 8,即永不过期.Redis可以通过例如expire 设定,例如expire n…
C#语法——泛型的多种应用   本篇文章主要介绍泛型的应用. 泛型是.NET Framework 2.0 版类库就已经提供的语法,主要用于提高代码的可重用性.类型安全性和效率. 泛型的定义 下面定义了一个普通类和一个泛型类,我们可以明确看到泛型类和普通类最大的区别就是多了一个<T>. 所以,这个<T>就标记了,这个类是泛型类.其中这个T,也可以写成A,B,C,D或其他字符. 1 2 3 4 public class Generic {     public String Name;…
传统MySQL+ Memcached架构遇到的问题 实际MySQL是适合进行海量数据存储的,通过Memcached将热点数据加载到cache,加速访问,很多公司都曾经使用过这样的架构,但随着业务数据量的不断增加,和访问量的持续增长,我们遇到了很多问题: 1.MySQL需要不断进行拆库拆表,Memcached也需不断跟着扩容,扩容和维护工作占据大量开发时间. 2.Memcached与MySQL数据库数据一致性问题. 3.Memcached数据命中率低或down机,大量访问直接穿透到DB,MySQL…
传统MySQL+ Memcached架构遇到的问题 实际MySQL是适合进行海量数据存储的,通过Memcached将热点数据加载到cache,加速访问,很多公司都曾经使用过这样的架构,但随着业务数据量的不断增加,和访问量的持续增长,我们遇到了很多问题: 1.MySQL需要不断进行拆库拆表,Memcached也需不断跟着扩容,扩容和维护工作占据大量开发时间. 2.Memcached与MySQL数据库数据一致性问题. 3.Memcached数据命中率低或down机,大量访问直接穿透到DB,MySQL…