HDU3480】的更多相关文章

题目链接:https://vjudge.net/problem/HDU-3480 Division Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 999999/400000 K (Java/Others)Total Submission(s): 5304    Accepted Submission(s): 2093 Problem Description Little D is really interested in the…
题意:给你n个数,然后让你分成m个集合,每个集合有一个值(最大值减最小值,然后平方),求整个集合的可能最小值. 思路:因为每个集合里的值只和最大和最小值有关,所以很容易想到先排序,然后用DP可求得解,状态转移方程dp[i][j] = min(dp[i][j] , dp[k][j - 1] + (a[i] - a[k + 1]) ^ 2),j表示数组的下标,i表示集合数,dp为最小值,但是因为n为10000,m为5000,这个复杂度肯定会超时,所以可以用斜率或四边形优化来减小复杂度,式子就不证明了…
Division Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 999999/400000 K (Java/Others) Total Submission(s): 2664    Accepted Submission(s): 1050 Problem Description Little D is really interested in the theorem of sets recently. There's a pro…
题意:将n个数分成m段,每段的代价为最大值减最小值的平方,为代价最小是多少n<=10000 ,m<=5000 题解:先拍好序,从小到大,这样绝对是花费最小的,不过怎么样来做呢?一定很容易想到dp 分段dp十分好想吧,f[i][j]表示前i个数,分成j个数的最小值. w[i][j]区间包含性十分好证明, 平行四边不等性,可以很好证明, 对吧,这样很好理解 所以得出f[i][j]满足------>s[i][j-1]<=s[i][j]<=s[i+1][j] 这个得出来就ok了,但是…
题目大意:将n个数分成m组,将每组的最大值与最小值的平方差加起来,求最小和. 题目分析:先对数排序.定义状态dp(i,j)表示前 j 个数分成 i 组得到的最小和,则状态转移方程为dp(i,j)=min(dp(i,k-1)+w(k,j)),其中w(i,j)=(a[i]-s[j])*(a[i]-a[j]).很显然,dp(i,j)满足凸四边形不等式. 代码如下: # include<iostream> # include<cstdio> # include<cstring>…
http://acm.hdu.edu.cn/showproblem.php?pid=3480 将一列数划分成几个集合,这些集合的并集为该数列,求每个数列的(最大值-最小值)^2的和的最小值. 简单的dp都会写,就不讲了. 然后就是四边形优化了,参考:https://blog.csdn.net/noiau/article/details/72514812 事实上四边形优化的条件一般是靠打表打出来的. 于是简单记录下吧: 先排序. 设dp[i][j]为前j个数划分成i个集合的最小值,cost[i][…
题面: 传送门 思路: 因为集合可以无序选择,所以我们先把输入数据排个序 然后发先可以动归一波 设$dp\left[i\right]\left[j\right]$表示前j个数中分了i个集合,$w\left(i\right)\left(j\right)$表示$i$到$j$的闭区间分到一个集合里的花费 然后就有方程式: $dp\left[i\right]\left[j\right]=min\left(dp\left[i-1\right]\left[k-1\right]+w\left(k\right)…
题目大意 将N个数分成M部分,使每部分的最大值与最小值平方差的和最小. 思路 首先肯定要将数列排序,每部分一定是取连续的一段,于是就有了方程 $\Large f(i,j)=min(f(i-1,k-1)+(a_j-a_k)^2)$ 其中$f(i,j)$表示前$j$个数分成$i$部分的最小值 解法一.四边形不等式优化 设$w(i,j)=(a_j-a_i)^2$ 方程变为$f(i,j)=min(f(i-1,k-1)+w(k,j))$ 很容易想到四边形不等式优化 证明w满足四边形不等式 $w(i,j)-…
Problem Description Little D is really interested in the theorem of sets recently. There's a problem that confused him a long time.   Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T i…
首先得讲一下单调队列,顾名思义,单调队列就是队列中的每个元素具有单调性,如果是单调递增队列,那么每个元素都是单调递增的,反正,亦然. 那么如何对单调队列进行操作呢? 是这样的:对于单调队列而言,队首和队尾都可以进行出队操作,但只有队尾能够进行入队操作. 至于如何来维护单调队列,这里以单调递增队列为例: 1.如果队列的长度是一定的,首先判断队首元素是否在规定范围内,如果不再,则队首指针向后移动.(至于如何来判断是否在制定范围内,一般而言,我们可以给每个元素设定一个入队的序号,这样就能够知道每个元素…