HDU 3037(Lucas定理)】的更多相关文章

对于很大的组合数不能用C(n, m) = C(n - 1, m) + C(n-1, m -1)来求,这里就用到Lucas定理. 模板题: hdu3037:模板如下: #include <cstdio> using namespace std; ; typedef long long ll; ll F[maxn]; //求1-p所有的阶乘模上p void init(ll p) { F[] = ; ; i <= p; i++) F[i] = F[i - ] * i % p; } //求逆元…
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; int jc[100003]; int p; int ipow(int x, int b) { ll t = 1, w = x;…
acm.hdu.edu.cn/showproblem.php?pid=3037 [题意] m个松果,n棵树 求把最多m个松果分配到最多n棵树的方案数 方案数有可能很大,模素数p 1 <= n, m <= 1000000000, 1 < p < 100000 [思路] 答案为C(n+m,m)%p 对于C(n, m) mod p.这里的n,m,p(p为素数)都很大的情况.就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了.这里用到Luca…
Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4315    Accepted Submission(s): 1687 Problem Description Although winter is far away, squirrels have to work day and night to save be…
解题思路: 直接求C(n+m , m) % p , 由于n , m ,p都非常大,所以要用Lucas定理来解决大组合数取模的问题. #include <string.h> #include <iostream> #include <algorithm> #include <vector> #include <queue> #include <set> #include <map> #include <string&g…
组合数学推推推最后,推得要求C(n+m,m)%p 其中n,m小于10^9,p小于1^5 用Lucas定理求(Lucas定理求nm较大时的组合数) 因为p数据较小可以直接阶乘打表求逆元 求逆元时,由费马小定理知道p为素数时,a^p-1=1modp可以写成a*a^p-2=1modp 所以a的逆元就是a^p-2, 可以求组合数C(n,m)%p中除法取模,将其转化为乘法取模 即    n!/(m!*(n-m)!)=n!*(m!*(n-m)!)^p-2 求C(n+m,m). n,m<=1000,二维数组递…
题意:问用不超过 m 颗种子放到 n 棵树中,有多少种方法. 析:题意可以转化为 x1 + x2 + .. + xn = m,有多少种解,然后运用组合的知识就能得到答案就是 C(n+m, m). 然后就求这个值,直接求肯定不好求,所以我们可以运用Lucas定理,来分解这个组合数,也就是Lucas(n,m,p)=C(n%p,m%p)* Lucas(n/p,m/p,p). 然后再根据费马小定理就能做了. 代码如下: 第一种: #pragma comment(linker, "/STACK:10240…
主题链接:pid=3037">http://acm.hdu.edu.cn/showproblem.php?pid=3037 推出公式为C(n + m, m) % p. 用Lucas定理求大组合数取模的值 代码: #include <stdio.h> #include <string.h> #include <algorithm> using namespace std; int t; long long n, m, p; long long pow(lo…
Tom and matrix Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=5226 Mean: 题意很简单,略. analyse: 直接可以用Lucas定理+快速幂水过的,但是我却作死的用了另一种方法. 方法一:Lucas定理+快速幂水过 方法二:首先问题可以转化为求(0,0),(n,m)这个子矩阵的所有数之和.画个图容易得到一个做法,对于n<=m,答案就是2^0+2^1+...+2^m=2^(m+1)-1,对于n>m…
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5446 [题目大意] 给出一个合数M的每一个质因子,同时给出n,m,求C(n,m)%M. [题解] 首先我们可以用Lucas定理求出对答案对每个质因子的模,然后我们发现只要求解这个同余方程组就可以得到答案,所以我们用中国剩余定理解决剩下的问题. [代码] #include <cstdio> #include <cstring> #include <algorithm> u…