题目: Description 小 C 最近学了很多最小生成树的算法,Prim 算法.Kurskal 算法.消圈算法等等. 正当小 C 洋洋得意之时,小 P 又来泼小 C 冷水了.小 P 说,让小 C 求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说: 如果最小生成树选择的边集是 EM,严格次小生成树选择的边集是 ES,那么需要满足:(value(e) 表示边 e的权值)  这下小 C 蒙了,他找到了你,希望你帮他解决这个问题. Input 第一行包含两个整数N 和M,表…
[BZOJ1977][BeiJing2010组队]次小生成树 Tree Description 小 C 最近学了很多最小生成树的算法,Prim 算法.Kurskal 算法.消圈算法等等. 正当小 C 洋洋得意之时,小 P 又来泼小 C 冷水了.小 P 说,让小 C 求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说: 如果最小生成树选择的边集是 EM,严格次小生成树选择的边集是 ES,那么需要满足:(value(e) 表示边 e的权值)  这下小 C 蒙了,他找到了你,希望…
洛谷P4180:https://www.luogu.org/problemnew/show/P4180 前言 这可以说是本蒟蒻打过最长的代码了 思路 先求出此图中的最小生成树 权值为tot 我们称这棵树中的n-1条边为“树边” 其他m-n+1条边为“非树边” 枚举每条非树边(x,y,z)添加到最小生成树中 可以在x,y之间构成一个环 设x,y之间的路径最大值为val1 次大值为val2(val1>val2) 则有以下两种情况 当z>val1时 则把val1对应的边换成(x,y,z) 得到一个候…
正题 题目链接:https://www.luogu.com.cn/problem/P4180 题目大意 \(n\)个点\(m\)条边的一张无向图,求它的严格次小生成树. \(1\leq n\leq 10^5,1\leq m\leq 3\times 10^5\) 解题思路 一定存在一种严格次小生成树和最小生成树只差一条边,感性理解的话大概就是如果有两条不同那么肯定有一条可以替换成另一条要么更优要么不变. 所以我们可以枚举一条不选的边\((u,v,w)\)然后找到最小生成树上\(u,v\)路径最大的…
题目描述 求一张图的严格次小生成树的边权和,保证存在. 输入 第一行包含两个整数N 和M,表示无向图的点数与边数. 接下来 M行,每行 3个数x y z 表示,点 x 和点y之间有一条边,边的权值为z. 输出 包含一行,仅一个数,表示严格次小生成树的边权和.(数据保证必定存在严格次小生成树) 样例输入 5 6 1 2 1 1 3 2 2 4 3 3 5 4 3 4 3 4 5 6 样例输出 11 题解 最小生成树+权值线段树合并 首先有一个常用的结论:次小生成树(无论是否严格)只要存在,则一定可…
非严格次小生成树 很简单,先做最小生成树 然后枚举没加入的边加入,替换掉这个环内最大的边 最后取\(min\) 严格次小生成树 还是一样的 可以考虑维护一个严格次大值 最大值和枚举的边相同就替换次大值的边 否则替换最大值的边 最后取\(min\) 裸题 Luogu 随你用各种姿势\(AC\) \(LCT\)常数大,但是好写,开\(O2\)可以过 # include <bits/stdc++.h> # define RG register # define IL inline # define…
洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小生成树弄出来,因为要求次小生成树.至于为什么次小一定只在最小的基础上改变了一条边,我也不会严谨的证明......打表找规律大法好 剩下的可以有一堆数据结构来维护最大值和次大值(原理两位巨佬都讲清楚了,这里只分析一下算法的优劣) kruscal+倍增+LCA 山楠巨佬的做法,我也写了这一种.复杂度\(…
Brief Description 求一个无向图的严格次小生成树. Algorithm Design 考察最小生成树的生成过程.对于一个非树边而言,如果我们使用这一条非树边去替换原MST的路径上的最大边,可以证明仍然满足生成树性质,而且这个生成树的大小一定不小于原生成树,那么枚举所有这样的非树边,尝试去替换,找到最小值就可以了. 那么问题就转化成了求树上两个点的最大/最小距离,这是树上倍增的经典应用,可以知道: \[Max(x,i) = max(Max(x,i-1), Max(fa(x,i-1)…
Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following…
题目链接 Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the fol…