SDOI 2015 约束个数和】的更多相关文章

Description: 共\(T \le 5 \times 10^4\)组询问, 每组询问给定\(n\)和\(m\), 请你求出 \[ \sum_{i = 1}^n \sum_{j = 1}^m \sigma_0 (ij) \] Solution: 先给出一个结论: \[ \sigma_0(ij) = \sum_{a | i} \sum_{b | j} [\gcd(a, b) = 1] \] 证明: 我们令\(i = p_1^{a_1} p_2^{a_2} \cdots\), \(j = p_…
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} a_{\frac n d} \] 双重因子 \[ \sum_{k | n} \sum_{j | k} a_{k, j} = \sum_{k | n} \sum_{j | \frac n k} a_{jk, k} \] \[ \sum_{n | k} \sum_{k | j} a_{k, j} = \…
Description  设d(x)为x的约数个数,给定N.M,求 $\sum^N_{i=1}\sum^M_{j=1}d(ij)$ Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T行,每行一个整数,表示你所求的答案. Sample Input 2 7 4 5 6 Sample Output 110 121 HINT 1<=N, M<=50000 1<=T<=50000 题解 先给出一个结论: $$…
[BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT) 题面 小C有一个集合S,里面的元素都是小于质数M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S.小C用这个生成器生成了许多这样的数列.但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中所有数的乘积mod M的值等于x的不同的数列的有多少个.小C认为,两个数列{Ai}和{Bi}不同,当且仅当至少存在一个整数i,满足Ai≠Bi.另外,小C认为这个…
题意 设\(d(x)\)为\(x\)的约数个数,求\(\sum_{i=1}^{n}\sum_{j=1}^{m}d(ij)\). 题解 首先证个公式: \[d(ij) = \sum_{x|i}\sum_{y|j} [gcd(x,y)=1]\] 可以这么考虑:利用唯一分解定理把\(i,j\)分解,即: $i=\prod_{k = 1}^{m} p_k^{c_k},j=\prod_{k=1}^m p_k^{d_k} $ 那等式左边显然为\(\prod(c_k+d_k+1)\), 然后考虑等式右边在干什…
Problem Description 设 \(d(x)\) 为 \(x\) 的约数个数,给定 \(N\).\(M\),求 \[ \sum_{i=1}^N \sum_{j=1}^M d(ij) \] Input Format 输入文件包含多组测试数据. 第一行,一个整数 \(T\),表示测试数据的组数. 接下来的 \(T\) 行,每行两个整数 \(N\).\(M\). Output Format \(T\) 行,每行一个整数,表示你所求的答案. Sample Input 2 7 4 5 6 Ou…
3990: [SDOI2015]排序 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 336  Solved: 164[Submit][Status][Discuss] Description 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1<=i<=N),第i中操作为将序列从左到右划分为2^{N-i+1}段,每段恰好包括2^{i-1}个数,然后整体交换…
这个题哎呀...细节超级多... 首先,我猜了一个结论.如果有一种排序方案是可行的,假设这个方案是 $S$ . 那么我们把 $S$ 给任意重新排列之后,也必然可以构造出一组合法方案来. 于是我们就可以 $O(2^n)$ 枚举每个操作进不进行,再去判断,如果可行就 $ans$ += $|S|!$. 然而怎么判断呢? 我们按照操作种类从小到大操作. 假设我们现在在决策第 $i$ 种操作并且保证之前之后不需要进行种类编号 $< i$ 的操作. 那么我们只考虑那些位置在 $2^i+1$ 的位置的那些数.…
这个题最暴力的搞法就是这样的: 设 $Dp[i][j]$ 为前 $i$ 个数乘积为 $j$ 的方案数. 转移的话就不多说了哈... 当前复杂度 $O(nm^2)$ 注意到,$M$ 是个质数,就说明 $M$ 有原根并且我们可以很快的求出来. 于是对于 $1\rightarrow M-1$ 中的每一个数都可以表示成原根的某次幂. 于是乘法可以转化为原根的幂的加法, 转移的时候就相当于做多项式乘法了. 我们再注意到,$1004535809 = 479 \times 2^{21} + 1$ 并且是个质数…
Description 题库链接 给出集合 \(S\) ,元素都是小于 \(M\) 的非负整数.问能够生成出多少个长度为 \(N\) 的数列 \(A\) ,数列中的每个数都属于集合 \(S\) ,并且 \[\prod_{i=1}^N A_i\equiv x \pmod{M}\] 答案对 \(1004535809\) 取模. \(1\leq N\leq 10^9,3\leq M\leq 8000, M 为质数,0\leq x\leq M-1\) Solution 显然能够得到 \(DP\) 的解法…