逆序数的神题.... 居然是逆序数 居然用逆序数过的 提示...按照X从小到大排列,之后统计Y的逆序数... 之后,得到的答案就是传说中的解(斜率小于零) #include<bits/stdc++.h> using namespace std; ; pair<long long,long long> arr[MAXN]; bool com(pair<long long,long long>p1, pair<long long,long long>p2) {…
二维平面上N个点之间共有C(n,2)条连线.求这C(n,2)条线中斜率小于0的线的数量. 二维平面上的一个点,根据对应的X Y坐标可以表示为(X,Y).例如:(2,3) (3,4) (1,5) (4,6),其中(1,5)同(2,3)(3,4)的连线斜率 < 0,因此斜率小于0的连线数量为2.   Input第1行:1个数N,N为点的数量(0 <= N <= 50000) 第2 - N + 1行:N个点的坐标,坐标为整数.(0 <= Xii , Yii <= 10^9)Outp…
https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1107 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 二维平面上N个点之间共有C(n,2)条连线.求这C(n,2)条线中斜率小于0的线的数量. 二维平面上的一个点,根据对应的X Y坐标可以表示为(X,Y).例如:(2,3) (3,4) (1,5) (4,6),其中(1,5)同(2,3)(3,4)的连线斜率 < 0,因…
1107 斜率小于0的连线数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题   二维平面上N个点之间共有C(n,2)条连线.求这C(n,2)条线中斜率小于0的线的数量. 二维平面上的一个点,根据对应的X Y坐标可以表示为(X,Y).例如:(2,3) (3,4) (1,5) (4,6),其中(1,5)同(2,3)(3,4)的连线斜率 < 0,因此斜率小于0的连线数量为2.   Input 第1行:1个数N,N为点的数量(0 <= N <= 50000…
51nod 1376 最长递增子序列的数量 数组A包含N个整数(可能包含相同的值).设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递增子序列(LIS).A的LIS可能有很多个.例如A为:{1 3 2 0 4},1 3 4,1 2 4均为A的LIS.给出数组A,求A的LIS有多少个.由于数量很大,输出Mod 1000000007的结果即可.相同的数字在不同的位置,算作不同的,例如 {1 1 2} 答案为2.   Input 第1行…
51nod 1376 最长上升子序列的数量 题解 我们设lis[i]为以位置i结尾的最长上升子序列长度,dp[i]为以位置i结尾的最长上升子序列数量. 显然,dp[i]要从前面的一些位置(设为位置j)的dp转移过来. j要满足下面的条件: j < i a[j] < a[i] lis[j] = lis[i] - 1 dp[i]即为所有满足上述条件的dp[j]之和. 如果我们正常从左到右处理序列,第一条显然可以直接满足(因为大于i的位置还都没处理过). 为了满足第三条,我们可以把lis相同的值放在…
1. 小于N的质数数量 import java.util.Scanner; /** * 计算小于N的质数数量 * @author Turing * */ public class Main4 { public static void main( String[] args ) { Scanner sc = new Scanner(System.in); int [] arr = new int[100]; int num = 0; while(sc.hasNextLine()){ String…
在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数.   如2 4 3 1中,2 1,4 3,4 1,3 1是逆序,逆序数是4.给出一个整数序列,求该序列的逆序数. Input 第1行:N,N为序列的长度(n <= 50000) 第2 - N + 1行:序列中的元素(0 <= A[i] <= 10^9) Output 输出逆序数 Input示例 4 2 4 3 1 Output示例 4 思路: 本题…
传送门: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1100 由于2 <= N <= 10000, 所以不难想出一个O(n^2)的枚举算法,枚举两个点的坐标.不断更新最大斜率的值,用一个结构体数组来记录两个点,每次更新的时候将数组的下标重置为1. #include <cstdio> #include <cstring> #include <cmath> #include &l…
题意:略. 析:dp[i] 表示以第 i 个数结尾的LIS的长度和数量,状态方程很好转移,先说长度 dp[i] = max { dp[j] + 1 | a[i] > a[j] && j < i },然后是数量,dp[i] = sigma(dp[j]) if dp[i] == dp[j] + 1. 如果普通转移时间复杂度很高,达不到要求,由于有个求和的操作,可以考虑用BIT优化,先把每个数离散化,然后对每个数只要求小于它的数,并且长度最长的就好了,数量也是,如果长度一样就进行合并…