题目链接(卡常背包) 朴素的多重背包是: \(f[i][j] = \max\{ f[i-1][j-k*v[i]]+k*w[i] \}\),复杂度 \(O(nV*\sum num_i)\) 可以发现求\(\max\)时有很多值是被重复枚举过的 换一种方程表示形式,对于每个\(v[i]\),设\(j=K*v[i]+r,\quad K=j/v[i],\quad r=j\%v[i]\),即按照\(\%v[i]\)的余数分别进行dp(第二层枚举余数\(r\)) 再枚举\(k=0\sim K-1\)(去掉\…
题目描述 小S坚信任何问题都可以在多项式时间内解决,于是他准备亲自去当一回旅行商.在出发之前,他购进了一些物品.这些物品共有n种,第i种体积为Vi,价值为Wi,共有Di件.他的背包体积是C.怎样装才能获得尽量多的收益呢?作为一名大神犇,他轻而易举的解决了这个问题. 然而,就在他出发前,他又收到了一批奇货.这些货共有m件,第i件的价值Yi与分配的体积Xi之间的关系为:Yi=ai*Xi^2+bi*Xi+ci.这是件好事,但小S却不知道怎么处理了,于是他找到了一位超级神犇(也就是你),请你帮他解决这个…
题目: P1523 旅行商简化版 解析 可以看做是两个人同时从西往东走,经过不一样的点,走到最东头的方案数 设\(f[i][j]\)表示一个人走到i,一个人走到j的最短距离(\(i<j\)) 第\(j+1\)个位置,两个人都可能走,两种情况 \(f[i][j+1]=min\{f[i][j+1],f[i][j]+dis[j][j+1]\}\)位置在j的人走到了j+1位置 \(f[j][j+1]=min\{f[j][j+1],f[i][j]+dis[i][j+1]\}\)位置在i的人走到了j+1位置…
传送门啦 这个题不用二进制优化的话根本不行,现学的二进制优化,调了一段时间终于A了,不容易.. 如果不懂二进制优化的话可以去看我那个博客 二进制优化多重背包入口 不想TLE,不要打memset,一定要用快读,听别人说不用快读卡三个点,幸亏我习惯打快读. #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const…
题目链接 https://www.luogu.org/problemnew/show/P1440 显然是一道单调队列题目…… 解题思路 对于单调队列不明白的请看这一篇博客:https://www.cnblogs.com/yinyuqin/p/10492882.html 这道题和模板唯一的不同点就是从0开始,一直输出n次.什么意思呢? 普通单调队列:单调队列中数据到达m个再输出 本题:从没有数据时就开始输出. 详细点说,就是输出0到0,0到1,0到2……一直到0到m-1,接着是1到m,2到m+1,…
题面 单调队列模板题. 单调队列可以从队首和队尾出队. 队列中的元素大小具有一定的顺序. 具体可参考这一篇题解 #include <bits/stdc++.h> #define itn int #define gI gi using namespace std; inline int gi() { int f = 1, x = 0; char c = getchar(); while (c < '0' || c > '9') {if (c == '-') f = -1; c = g…
一道单调队列优化DP的入门题. f[i]表示到第i头牛时获得的最大效率. 状态转移方程:f[i]=max(f[j-1]-sum[j])+sum[i] ,i-k<=j<=i.j的意义表示断点,因为不能连续安排超过k只牛,肯定要在中间断开一处. max中f[j-1]-sum[j]只和j相关,我们可以对其做递减单调队列,最后队头就是最大值max. 1 #include<bits/stdc++.h> 2 using namespace std; 3 typedef long long ll…
洛谷 P2015 二叉苹果树 (树上背包) 一道树形DP,本来因为是二叉,其实不需要用树上背包来干(其实即使是多叉也可以多叉转二叉),但是最近都刷树上背包的题,所以用了树上背包. 首先,定义状态\(dp[x][i]\)表示在节点\(x\)保留\(i\)个边所获得的最大苹果数,定义状态时一定要选对状态并且定义清晰(状态中包括了当前节点吗?目标状态是怎样的?).一开始我就是因为状态定义错误,所以卡了半天,之后重新定义状态后几分钟就切了这道题. 然后是普通的树上背包状态转移 \[ dp[x][i]=m…
洛谷 P1273 有线电视网(树形背包) 干透一道题 题面:洛谷 P1273 本质就是个背包.这道题dp有点奇怪,最终答案并不是dp值,而是最后遍历寻找那个合法且最优的\(i\)作为答案.dp值存的是当前状态下的成本,所以合法情况即当成本值大于等于0,不亏本的时候. 因为dp维护的是成本,并且按照背包思想,存在让这个用户接入和不让这个用户接入两种决策,类比背包,所以状态转移方程容易得到原始方程: \[ dp[s][i][j]=max \{ dp[s][i-1][j-k]+dp[w][size_w…
[题目描述:] ... (宣传luogu2的内容被自动省略) 洛谷的运营组决定,如果...,那么他可以浪费掉kkksc03的一些时间的同时消耗掉kkksc03的一些金钱以满足自己的一个愿望. Kkksc03的时间和金钱是有限的,所以他很难满足所有同学的愿望.所以他想知道在自己的能力范围内,最多可以完成多少同学的愿望? [输入格式:] 第一行,n M T,表示一共有n(n<=100)个愿望,kkksc03 的手上还剩M(M<=200)元,他的暑假有T(T<=200)分钟时间. 第2~n+1…