关于共享内存(shared memory)和存储体(bank)的事实和疑惑 主要是在研究访问共享内存会产生bank conflict时,自己产生的疑惑.对于这点疑惑,网上都没有相关描述, 不管是国内还是国外的网上资料.貌似大家都是当作一个事实,一个公理,而没有对其仔细研究.还是我自己才学疏浅,不知道某些知识. 比如下面这篇讲解bank conflict的文章. http://cuda-programming.blogspot.com/2013/02/bank-conflicts-in-share…
共享内存 共享内存是进程间通信中最简单的方式之一. 共享内存是系统出于多个进程之间通讯的考虑,而预留的的一块内存区. 共享内存允许两个或更多进程访问同一块内存,就如同 malloc() 函数向不同进程返回了指向同一个物理内存区域的指针.当一个进程改变了这块地址中的内容的时候,其它进程都会察觉到这个更改. 关于共享内存 当一个程序加载进内存后,它就被分成叫作页的块. 通信将存在内存的两个页之间或者两个独立的进程之间. 总之,当一个程序想和另外一个程序通信的时候,那内存将会为这两个程序生成一块公共的…
共享内存 共享内存是进程间通信中最简单的方式之中的一个. 共享内存是系统出于多个进程之间通讯的考虑,而预留的的一块内存区. 共享内存同意两个或很多其他进程訪问同一块内存,就如同 malloc() 函数向不同进程返回了指向同一个物理内存区域的指针. 当一个进程改变了这块地址中的内容的时候,其他进程都会察觉到这个更改. 关于共享内存 当一个程序载入进内存后,它就被分成叫作页的块. 通信将存在内存的两个页之间或者两个独立的进程之间. 总之,当一个程序想和另外一个程序通信的时候.那内存将会为这两个程序生…
CUDA SHARED MEMORY shared memory在之前的博文有些介绍,这部分会专门讲解其内容.在global Memory部分,数据对齐和连续是很重要的话题,当使用L1的时候,对齐问题可以忽略,但是非连续的获取内存依然会降低性能.依赖于算法本质,某些情况下,非连续访问是不可避免的.使用shared memory是另一种提高性能的方式. GPU上的memory有两种: · On-board memory · On-chip memory global memory就是一块很大的on…
ps:这是英伟达二面面的一道相关CUDA的题目.<NVIDIA CUDA编程指南>第57页开始          在合并访问这里,不要跟shared memory的bank conflict搞混淆了,这里很重要.          global memory没有被缓存(面试答错了!),因此,使用正确的存取模式来获得最大的内存带宽,更为重要,尤其是如何存取昂贵的设备内存device memory.          首先,设备device有能力,在一个单一指令下,从global memory中读…
http://hi.baidu.com/pengkuny/item/c8070b388d75d481b611db7a 以前以为 shared memory 是一个万能的 L1 cache,速度很快,只要数据的 size 够小,能够放到 shared memory,剩下的事情我就不用操心啦.实际上不是这样,bank conflict 是一个绕不过去的问题,否则,性能会降得很低,很低,很低... ----------------------------------------------------…
在OpenCL中,用__local(或local)修饰的变量会被存放在一个计算单元(Compute Unit)的共享存储器区域中.对于nVidia的GPU,一个CU可以被映射为物理上的一块SM(Stream Multiprocessor):而对于AMD-ATi的GPU可以被映射为物理上的一块SIMD.不管是SM也好,SIMD也罢,它们都有一个在本计算单元中被所有线程(OpenCL中称为Work Item)所共享的共享存储器.因此,在一个计算单元内,可以通过local shared memory来…
掌握部分硬件知识,有助于程序员编写更好的CUDA程序,提升CUDA程序性能,本文目的是理清sp,sm,thread,block,grid,warp之间的关系.由于作者能力有限,难免有疏漏,恳请读者批评指正.  首先我们要明确:SP(streaming Process),SM(streaming multiprocessor)是硬件(GPU hardware)概念.而thread,block,grid,warp是软件上的(CUDA)概念. 从硬件看 SP:最基本的处理单元,streaming pr…
GPU的硬件结构,也不是具体的硬件结构,就是与CUDA相关的几个概念:thread,block,grid,warp,sp,sm. sp: 最基本的处理单元,streaming processor  最后具体的指令和任务都是在sp上处理的.GPU进行并行计算,也就是很多个sp同时做处理 sm:多个sp加上其他的一些资源组成一个sm,  streaming multiprocessor. 其他资源也就是存储资源,共享内存,寄储器等. warp:GPU执行程序时的调度单位,目前cuda的warp的大小…
1.在用vs运行cuda的一些例子时,在编译阶段会报出很多警告: warning C4819 ...... 解决这个警告的方法是打开出现warning的文件,Ctrl+A全选,然后在文件菜单:file->Advanced save options,在弹出的选项中选择新的编码方式为:UNICODE- codepage 1200 ,点确定后重新编译. 为什么会出现这个警告呢?原因在于NvidIA方面,他们的在编写文件的时候用的字符集不通用. 2.关于warp和half-warp 一个warp包含32…