首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
The Epsilon-Delta Definition of a Limit
】的更多相关文章
FAQ: Machine Learning: What and How
What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-beginner-train-for-machine-learning-contests 链接内容总结: "学习任何一门学科,framework是必不可少的东西.没有framework的东西,那是研究." -- Jason Hawk One thing is for sure; you ca…
(六)6.13 Neurons Networks Implements of stack autoencoder
对于加深网络层数带来的问题,(gradient diffuse 局部最优等)可以使用逐层预训练(pre-training)的方法来避免 Stack-Autoencoder是一种逐层贪婪(Greedy layer-wise training)的训练方法,逐层贪婪的主要思路是每次只训练网络中的一层,即首先训练一个只含一个隐藏层的网络,仅当这层网络训练结束之后才开始训练一个有两个隐藏层的网络,以此类推.在每一步中,把已经训练好的前 层固定,然后增加第 层(也就是将已经训练好的前 的输出作为输入…
(六)6.10 Neurons Networks implements of softmax regression
softmax可以看做只有输入和输出的Neurons Networks,如下图: 其参数数量为k*(n+1) ,但在本实现中没有加入截距项,所以参数为k*n的矩阵. 对损失函数J(θ)的形式有: 算法步骤: 首先,加载数据集{x(1),x(2),x(3)...x(m)}该数据集为一个n*m的矩阵,然后初始化参数 θ ,为一个k*n的矩阵(不考虑截距项): 首先计算,该矩阵为k*m的: 然后计算: 该函数参数可以随意+-任意参数而保持值不变,所以为了防止 参数 过大,先减去一个常量,防…
(六)6.5 Neurons Networks Implements of Sparse Autoencoder
一大波matlab代码正在靠近.- -! sparse autoencoder的一个实例练习,这个例子所要实现的内容大概如下:从给定的很多张自然图片中截取出大小为8*8的小patches图片共10000张,现在需要用sparse autoencoder的方法训练出一个隐含层网络所学习到的特征.该网络共有3层,输入层是64个节点,隐含层是25个节点,输出层当然也是64个节点了. main函数, 分五步走,每个函数的实现细节在下边都列出了. %%==========================…
Retinex图像增强算法代码
http://www.cnblogs.com/sleepwalker/p/3676600.html?utm_source=tuicool http://blog.csdn.net/carson2005/article/details/9502053 Retinex理论 Retinex理论始于Land和McCann于20世纪60年代作出的一系列贡献,其基本思想是人感知到某点的颜色和亮度并不仅仅取决于该点进入人眼的绝对光线,还和其周围的颜色和亮度有关.Retinex这个词是由视网膜(Retina)和…
【强化学习】用pandas 与 numpy 分别实现 q-learning, saras, saras(lambda)算法
本文作者:hhh5460 本文地址:https://www.cnblogs.com/hhh5460/p/10159331.html 特别感谢:本文的三幅图皆来自莫凡的教程 https://morvanzhou.github.io/ pandas是基于numpy的,但是两者之间的操作有区别,故在实现上述算法时的细节有出入.故记录之 几点说明: 1). 为了更好的说明问题,采用最简单的例一. 2). 分离了环境与个体,采用类编程的形式. 3). 调整了环境与个体的变量.函数的位置,使得Agent完全…
SQL语法基础之SELECT
SQL语法基础之SELECT 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.SELECT查看帮助信息 1>.查看SELECT命令的帮助信息 mysql> ? SELECT Name: 'SELECT' Description: Syntax: SELECT [ALL | DISTINCT | DISTINCTROW ] [HIGH_PRIORITY] [STRAIGHT_JOIN] [SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUF…
【强化学习】python 实现 saras lambda 例一
本文作者:hhh5460 本文地址:https://www.cnblogs.com/hhh5460/p/10147265.html 将例一用saras lambda算法重新撸了一遍,没有参照任何其他人的代码.仅仅根据伪代码,就撸出来了.感觉已真正理解了saras lambda算法.记录如下 0. saras lambda算法伪代码 图片来源:https://morvanzhou.github.io/static/results/reinforcement-learning/3-3-1.png(莫…
CS229 6.13 Neurons Networks Implements of stack autoencoder
对于加深网络层数带来的问题,(gradient diffuse 局部最优等)可以使用逐层预训练(pre-training)的方法来避免 Stack-Autoencoder是一种逐层贪婪(Greedy layer-wise training)的训练方法,逐层贪婪的主要思路是每次只训练网络中的一层,即首先训练一个只含一个隐藏层的网络,仅当这层网络训练结束之后才开始训练一个有两个隐藏层的网络,以此类推.在每一步中,把已经训练好的前 层固定,然后增加第 层(也就是将已经训练好的前 的输出作为输入…
CS229 6.10 Neurons Networks implements of softmax regression
softmax可以看做只有输入和输出的Neurons Networks,如下图: 其参数数量为k*(n+1) ,但在本实现中没有加入截距项,所以参数为k*n的矩阵. 对损失函数J(θ)的形式有: 算法步骤: 首先,加载数据集{x(1),x(2),x(3)...x(m)}该数据集为一个n*m的矩阵,然后初始化参数 θ ,为一个k*n的矩阵(不考虑截距项): 首先计算,该矩阵为k*m的: 然后计算: 该函数参数可以随意+-任意参数而保持值不变,所以为了防止 参数 过大,先减去一个常量,防…