TVM:解析TVM算子】的更多相关文章

什么是JOIN 在<Apache Flink 漫谈系列 - SQL概览>中我对JOIN算子有过简单的介绍,这里我们以具体实例的方式让大家对JOIN算子加深印象.JOIN的本质是分别从N(N>=1)张表中获取不同的字段,进而得到最完整的记录行.比如我们有一个查询需求:在学生表(学号,姓名,性别),课程表(课程号,课程名,学分)和成绩表(学号,课程号,分数)中查询所有学生的姓名,课程名和考试分数.如下 为啥需要JOIN JOIN的本质是数据拼接,那么如果我们将所有数据列存储在一张大表中,是不…
TVM优化Deep Learning GPU算子 高效的深度学习算子是深度学习系统的核心.通常,这些算子很难优化,需要HPC专家付出巨大的努力. 端到端张量IR / DSL堆栈TVM使这一过程变得更加容易. 如何在TVM的帮助下编写高性能GPU运算符内核.本文以深度卷积(即topi.nn.depthwise_conv2d_nchw)为例,并演示如何在tensorflow中改进已经手工优化的CUDA内核.在不同的工作负载下,最终版本比tf-1.2中优化的内核快2到4倍,在启用了算子融合的情况下,最…
因为要添加的设备是一种类似于GPU的加速卡,TVM中提供了对GPU编译器的各种支持,有openCl,OpenGL和CUDA等,这里我们选取比较熟悉的CUDA进行模仿生成.从总体上来看,TVM是一个多层的结构 从上一个文档(TVM调试)中,基本可以发现,TVM在python这一层提供了相关的设备接口,然后使用tvm.build真正的编译,然后调用get_source函数来获得想要的源码(或者IR,比如llvm选项提供的是LLVM的IR,或者PTX选项提供的就是NVPTX类型的IR). 因此,添加新…
TVM自定义数据类型 本文将介绍"自定义数据类型"框架,该框架可在TVM中使用自定义数据类型. 介绍 在设计加速器时,关键是如何近似地表示硬件中的实数.这个问题具有长期的行业标准解决方案:IEEE 754浮点标准.然而,当试图通过构建高度专业化的设计来最大限度地利用硬件时,使用通用IEEE 754浮点数是否有意义?知道工作负载的数字要求,是否可以构建更小,更快或更省电的数据类型?答案是肯定的!研究人员已经开始在学术和工业加速器设计中尝试新的数据类型.例如,Google的Tensor处理…
Hello TVM  发表于 2019-06-29 TVM 是什么?A compiler stack,graph level / operator level optimization,目的是(不同框架的)深度学习模型在不同硬件平台上提高 performance (我要更快!) TVM, a compiler that takes a high-level specification of a deep learning program from existing frameworks and…
首先给出一个TVM 相关的介绍,这个是Tianqi Chen演讲在OSDI18上用的PPThttps://files.cnblogs.com/files/jourluohua/Tianqi-Chen-TVM-Stack-Overview.rar 对于图优化来说,位于整个软件编译栈比较高的层次: 首先给出计算图的定义 Computational graphs: a common way to represent programs in deep learning frameworks 对于图优化来…
TVM如何训练TinyML 机器学习研究人员和从业人员对"裸机"(低功耗,通常没有操作系统)设备产生了广泛的兴趣.尽管专家已经有可能在某些裸机设备上运行某些模型,但是为各种设备优化模型的挑战非常艰巨,通常需要手动优化设备特定的库.对于那些没有Linux支持的平台,不存在用于部署模型的可扩展解决方案.因此,为了定位新设备,开发人员必须实现一次性的定制软件堆栈,以管理系统资源和调度模型执行. 机器学习软件的手动优化不是裸机设备领域独有的.实际上,对于使用其它硬件后端(例如GPU和FPGA)…
TVM代码生成codegen 硬件后端提供程序(例如Intel,NVIDIA,ARM等),提供诸如cuBLAS或cuDNN之类的内核库以及许多常用的深度学习内核,或者提供框架例,如带有图形引擎的DNNL或TensorRT,使用户以某种方式描述模型,实现高性能.此外,新兴的深度学习加速器还具有自己的编译器,内核库或runtime框架. 当用户尝试在新的内核库或设备上工作时,必须学习新的编程接口.对统一编程接口的需求变得越来越重要,使所有用户和硬件后端提供程序都在同一页面上. 为了与广泛使用的深度学…
TVM优化GPU机器翻译 背景 神经机器翻译(NMT)是一种自动化的端到端方法,具有克服传统基于短语的翻译系统中的弱点的潜力.最近,阿里巴巴集团正在为全球电子商务部署NMT服务. 将Transformer用作NMT系统的关键技术,相对于基于经典RNN / LSTM的模型具有同等(甚至更高)的精度,对于高效的离线训练更为友好.尽管Transformer在离线训练阶段很友好,打破了跨时间步长的依赖性,但在线推理效率不高.在生产环境中,已经发现,初始版本的Transformer的推理速度约为1.5倍至…
端到端TVM编译器(上) 摘要 将机器学习引入到各种各样的硬件设备中.AI框架依赖于特定于供应商的算子库,针对窄范围的服务器级gpu进行优化.将工作负载部署到新平台,例如手机.嵌入式设备和加速器(例如,FPGA.ASIC)–需要大量手动操作.TVM,一个开源图形级的编译器和算子级优化,提供可移植到不同领域的深度学习工作负载性能硬件后端.TVM解决了特定于深度学习的优化挑战,例如高级算子融合.映射到任意硬件原语,存储潜伏期隐藏.通过采用一种新颖的基于学习的成本建模方法,用于快速探索代码优化.实验表…