Min-25 筛小记】的更多相关文章

\(Min\_25\)筛学习笔记 这种神仙东西不写点东西一下就忘了QAQ 资料和代码出处 资料2 资料3 打死我也不承认参考了yyb的 \(Min\_25\)筛可以干嘛?下文中未特殊说明\(P\)均指质数集合,\(p_i\)或\(p\)指某个具体质数. 求一类积性函数\(f(x)\)的前缀和,需要满足\(f(p)\)可以写成多项式的形式,或者操作一下可以写成多项式(如例题),且\(f(p^k)\)能快速求出. 讲真学这个东西比我什么都不会的时候学\(FFT\)都累. Round 1 先求质数的贡…
总之我也不知道这个奇怪的名字是怎么来的. \(Min\_25\)筛用来计算一类积性函数前缀和. 如果一个积性函数\(F(x)\)在质数单点是一个可以快速计算的关于此质数的多项式. 那么可以用\(Min\_25筛\). 这个东西和质数关系很大. 我们考虑分开处理质数和非质数的贡献. 首先处理质数: 设,\(R(n)\)为\(n\)的最小质因子,\(P\)为质因子集合,\(p_i\)为从小到大第\(i\)个质数. \(\forall\ x\in P,F(x)=x^k\). 设: \[g(n,j)=\…
感觉好好用啊 Luogu上的杜教筛模版题一发 Min_25抢到了 rank1 $ Updated \ on 11.29 $被 STO txc ORZ踩爆啦 前言 $ Min$_$25$筛可以求积性函数的前缀和 要求$ f(p_i)为一个多项式,f(p_i^{k_i})可以快速计算$ 以下部分暂时忽略$ 1$,即只考虑最小质因子$ \geq 2$的那些数 先考虑素数贡献 我们定义$ sp(n)$表示$\sum\limits_{i=1}^n f(p_i)$即前$ n$个素数的积性函数和 这里我们先假…
[复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_{n|d}\mu(\frac{d}{n})g(d)\end{aligned}\] 实际上还有 \[\begin{aligned}g(n)&=\sum_{d|n}f(d)\\f(n)&=\sum_{d|n}\mu(\frac{n}{d})g(d)\end{aligned}\] 证明可以看看这里,…
[51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\(sgcd\)表示次大公约数. 题解 明摆着\(sgcd\)就是在\(gcd\)的基础上除掉\(gcd\)的最小因数. 所以直接枚举\(gcd\). \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^n sgcd(i,j)^k\\ &=\sum_{i=1…
[LOJ#572]Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛) 题面 LOJ \[ans=\sum_{i=1}^n\sum_{j=1}^n f(gcd(i,j))^k\] 其中\(f(x)\)表示\(x\)的次大质因子. 题解 这个数据范围不是杜教筛就是\(min\_25\)筛了吧... 看到次大质因子显然要\(min\_25\)筛了吧... 莫比乌斯反演的部分比较简单,懒得写过程了. \[ans=\sum_{T=1}^n [\frac{n}{T}]^2\sum_…
题面 传送门 题解 这是一道语文题 不难看出,题目所求即为\(l\)到\(r\)中每个数的次大质因子 我们考虑\(Min\_25\)筛的过程,设 \[S(n,j)=\sum_{i=1}^nsec_p(i)[min_p(i)\geq P_j]\] 用人话来说的话,就是\(S(n,j)\)表示\(1\)到\(n\)之间所有满足最小值因子大于等于\(P_j\)的\(i\)的次大质因子之和 我们照例把质数和合数的贡献分开考虑.所有质数贡献为\(0\),而对于合数,我们枚举最小质因子\(P_k\).此时分…
神佬yyb 神佬zsy 想不到花了两个小时的时间看 \(min\_25\) 筛就看懂了 实际去追了一下魔禁3 我们先举个例子.如求 \[\sum_{i=1}^{n}f(i)\] 其中 \(f(i)\) 是积性函数,而且要满足 \(i\in prime\) 时 \(f(i)\) 是一个简单多项式,\(f(i^k)\) 可以快速计算出来. 怎么用呢 我们先丢开前缀和,计算 \[\sum_{i=1}^{n}[i\in prime]f(i)\] 那么现在我们要用到埃氏筛的思想.每次我们要减去新筛去的 \…
[UOJ#188]Sanrd(min_25筛) 题面 UOJ 题解 今天菊开讲的题目.(千古神犇陈菊开,扑通扑通跪下来) 题目要求的就是所有数的次大质因子的和. 这个部分和\(min\_25\)筛中枚举最小值因子有异曲同工之妙. min_25筛什么的戳这里 并且这题并没有积性函数. 所以我们先筛出质数个数. 然后考虑如何计算答案\(S(n,1)\) 首先看初值,假设当前计算的是\(S(x,y)\) 表示的是\([1,x]\)中,所有最小质因子大于等于\(Prime_y\)的贡献 所有质数的贡献显…
题面 传送门 题解 肝了整整一天--膜拜yww和cx巨巨--(虽然它们的题解里我就没看懂几个字) 请备好草稿纸和笔,这种题目就是需要耐心推倒 题目所求是这么一个东西 \[ \begin{aligned} ans &=\sum_{i=1}^n\sum_{x_1=1}^i\sum_{x_2=1}^i...\sum_{x_k=1}^ilcm(\gcd(i,x_1),\gcd(i,x_2),...,\gcd(i,x_k))\\ &=\sum_{i=1}^n\sum_{x_1=1}^i\sum_{x…