Selective Kernel Networks】的更多相关文章

摘要:在标准的卷积神经网络(CNNs)中,每一层的人工神经元的感受野被设计成具有相同的大小.众所周知,视觉皮层神经元的感受野大小受刺激的调节,但在构建cnn时却很少考虑到这一点.我们在神经网络中提出了一种动态选择机制,允许每个神经元根据输入信息的多个尺度自适应地调整其感受野大小.设计了一种被称为选择核单元(Selective Kernel, SK)的构件,该构件利用分支中信息引导的softmax注意力来融合不同核大小的多个分支.对这些分支的不同关注产生不同大小的融合层神经元的有效感受野.多个SK…
论文原址:https://arxiv.org/pdf/1903.06586.pdf github: https://github.com/implus/SKNet 摘要 在标准的卷积网络中,每层网络中神经元的感受野的大小都是相同的.在神经学中,视觉神经元感受野的大小是由刺激机制构建的,而在卷积网络中却很少考虑这个因素.本文提出的方法可以使神经元对于不同尺寸的输入信息进行自适应的调整其感受野的大小.building block为Selective Kernel单元.其存在多个分支,每个分支的卷积核…
senet: https://arxiv.org/abs/1709.01507 sknet: http://arxiv.org/abs/1903.06586 TL, DR Selective Kernel Networks 启发自皮质神经元根据不同的刺激可动态调节其自身的receptive field, 从而在CNN每一个 stage, 增加不同尺寸 filter 分支. 总体网络结构和 SENet 相似(几乎一致), 相对于大网络, 对小网络的性能提升比较明显. SENet abstract…
Awsome Domain-Adaptation 2018-08-06 19:27:54 This blog is copied from: https://github.com/zhaoxin94/awsome-domain-adaptation This repo is a collection of AWESOME things about domian adaptation,including papers,code etc.Feel free to star and fork. Con…
Introduction to TensorFlow Lite TensorFlow Lite is TensorFlow’s lightweight solution for mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size. TensorFlow Lite also supports hardware acc…
1. Abstract 本文旨在简单介绍下各种轻量级网络,纳尼?!好吧,不限于轻量级 2. Introduction 2.1 Inception 在最初的版本 Inception/GoogleNet,其核心思想是利用多尺寸卷积核去观察输入数据.举个栗子,我们看某个景象由于远近不同,同一个物体的大小也会有所不同,那么不同尺度的卷积核观察的特征就会有这样的效果.于是就有了如下的网络结构图: 图1: Inception module, naive version 于是我们的网络就变胖了,通过增加网络的…
https://stats385.github.io/readings Lecture 1 – Deep Learning Challenge. Is There Theory? Readings Deep Deep Trouble Why 2016 is The Global Tipping Point... Are AI and ML Killing Analyticals... The Dark Secret at The Heart of AI AI Robots Learning Ra…
CVPR 2018大会将于2018年6月18~22日于美国犹他州的盐湖城(Salt Lake City)举办. CVPR2018论文集下载:http://openaccess.thecvf.com/menu.py 目前CVPR2018论文还不能打包下载,但可以看到收录论文标题的清单,感兴趣的可以自行google/baidu下载 详细可以点击链接:https://github.com/amusi/daily-paper-computer-vision/blob/master/2018/cvpr20…
在这篇论文中,作者提出了一种更加通用的池化框架,以核函数的形式捕捉特征之间的高阶信息.同时也证明了使用无参数化的紧致清晰特征映射,以指定阶形式逼近核函数,例如高斯核函数.本文提出的核函数池化可以和CNN网络联合优化. Network Structure Overview Kernel Pooling Method The illustration of the tensor product A summary of pooling strategies Experiment Evaluation…
Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun 引用: He, Kaiming, et al. "Spatial pyramid pooling in deep convolutional networks for visual recognition." IEEE…