欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 文章索引::"机器学习方法","深度学习方法","三十分钟理解"原创系列 2017年3 月,谷歌大脑负责人 Jeff Dean 在 UCSB 做了一场题为<通过大规模深度学习构建智能系统>的演讲[9].Jeff Dean 在演讲中提到,当前的做法是: 解决方案 = 机…
1.什么是MLBaseMLBase是Spark生态圈的一部分,专注于机器学习,包含三个组件:MLlib.MLI.ML Optimizer. ML Optimizer: This layer aims to automating the task of ML pipeline construction. The optimizer solves a search problem over feature extractors and ML algorithms included inMLI and…
目录 一.经验误差与过拟合 二.评估方法 模型评估方法 1. 留出法(hold-out) 2. 交叉验证法(cross validation) 3. 自助法(bootstrapping) 调参(parameter tuning)和最终模型 数据集(data set) 三.性能度量(performance measure) 1. 回归任务的性能度量 1.1 均方误差.均方根误差 1.2 平方绝对误差 1.3 确定系数\(R^2\) 2. 分类任务的性能度量 2.1 错误率.精度 2.2 查准率.查…
整个状态机的基本流程如下图所示,后续分析将按该流程来进行. 接上节分解,主线程将接收的连接socket分发给了某工作线程,然后工作线程从任务队列中取出该连接socket的CQ_ITEM,开始处理该连接的所有业务逻辑.这个过程也就是上图中的第一个状态conn_listening. 而工作线程首先进入的状态就是conn_new_cmd,即为这个新的连接做一些准备工作,如清理该连接conn结构的读缓冲区等. 准备状态conn_new_cmd具体分析如下: {  <span style="font…
Logistic Regression 一.内容概要 Classification and Representation Classification Hypothesis Representation Decision Boundary Logistic Regression Model 损失函数(cost function) 简化损失函数和梯度下降算法 Advanced Optimization(高级优化方法) Solving the problem of Overfitting 什么是过拟…
       原文连接:MxNet和Caffe之间有什么优缺点一.前言: Minerva: 高效灵活的并行深度学习引擎 不同于cxxnet追求极致速度和易用性,Minerva则提供了一个高效灵活的平台让开发者快速实现一个高度定制化的深度神经网络. Minerva在系统设计上使用分层的设计原则,将"算的快"这一对于系统底层的需求和"好用"这一对于系统接口的需求隔离开来,如图3所示.在接口上,我们提供类似numpy的用户接口,力图做到友好并且能充分利用Python和nu…
2015-01-05 大数据平台 Hadoop大数据平台 基本概念 kafka的工作方式和其他MQ基本相同,只是在一些名词命名上有些不同.为了更好的讨论,这里对这些名词做简单解释.通过这些解释应该可以大致了解kafka MQ的工作方式. Producer (P):就是网kafka发消息的客户端 Consumer (C):从kafka取消息的客户端 Topic (T):可以理解为一个队列 Consumer Group (CG):这是kafka用来实现一个topic消息的广播(发给所有的consum…
[业界方案] 用SOFATracer学习分布式追踪系统Opentracing 目录 [业界方案] 用SOFATracer学习分布式追踪系统Opentracing 0x00 摘要 0x01 缘由 & 问题 1.1 选择 1.2 问题 1.3 本文讨论范围 0x02 背景知识 2.1 趋势和挑战 2.2 可观察性(Observability) 2.3 Tracing 2.3.1 Tracing 的诞生 2.3.2 Tracing的功能 2.4 OpenTracing 0x03 OpenTracing…
[业界方案]用Jaeger来学习分布式追踪系统Opentracing 目录 [业界方案]用Jaeger来学习分布式追踪系统Opentracing 0x00 摘要 0x01 缘由 & 问题 1.1 选择Jaeger 1.2 问题 1.3 本文讨论范围 1.3.1 Jaeger构成 1.3.2 全链路跟踪 0x02 背景知识 0x03 示例代码 3.1 代码 3.2 dropwizard 0x04 链路逻辑 0x05 数据模型 5.1 Tracer & JaegerTracer 5.2 Spa…
%matplotlib inline 数据并行(选读) Authors: Sung Kim and Jenny Kang 在这个教程里,我们将学习如何使用 DataParallel 来使用多GPU. PyTorch非常容易就可以使用多GPU,用如下方式把一个模型放到GPU上: device = torch.device("cuda:0") model.to(device) GPU: 然后复制所有的张量到GPU上: mytensor = my_tensor.to(device) 请注意,…