首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Spark的RDD原理以及2.0特性的介绍
】的更多相关文章
Spark的RDD原理以及2.0特性的介绍
转载自:http://www.tuicool.com/articles/7VNfyif 王联辉,曾在腾讯,Intel 等公司从事大数据相关的工作.2013 年 - 2016 年先后负责腾讯 Yarn 集群和 Spark 平台的运营与研发.曾负责 Intel Hadoop 发行版的 Hive 及 HBase 版本研发.参与过百度用户行为数据仓库的建设和开发,以及淘宝数据魔方和淘宝指数的数据开发工作.给 Spark 社区贡献了 25+ 个 patch,接受的重要特性有 python on yarn-…
Spark之RDD的定义及五大特性
RDD是分布式内存的一个抽象概念,是一种高度受限的共享内存模型,即RDD是只读的记录分区的集合,能横跨集群所有节点并行计算,是一种基于工作集的应用抽象. RDD底层存储原理:其数据分布存储于多台机器上,事实上,每个RDD的数据都以Block的形式存储于多台机器上,每个Executor会启动一个BlockManagerSlave,并管理一部分Block:而Block的元数据由Driver节点上的BlockManagerMaster保存,BlockManagerSlave生成Block后向Block…
Hadoop3.0新特性介绍,比Spark快10倍的Hadoop3.0新特性
Hadoop3.0新特性介绍,比Spark快10倍的Hadoop3.0新特性 Apache hadoop 项目组最新消息,hadoop3.x以后将会调整方案架构,将Mapreduce 基于内存+io+磁盘,共同处理数据.其实最大改变的是hdfs,hdfs 通过最近black块计算,根据最近计算原则,本地black块,加入到内存,先计算,通过IO,共享内存计算区域,最后快速形成计算结果. 1. Hadoop 3.0简介 Hadoop 2.0是基于JDK 1.7开发的,而JDK 1.7在2015年4…
Spark之RDD容错原理及四大核心要点
一.Spark RDD容错原理 RDD不同的依赖关系导致Spark对不同的依赖关系有不同的处理方式. 对于宽依赖而言,由于宽依赖实质是指父RDD的一个分区会对应一个子RDD的多个分区,在此情况下出现部分计算结果丢失,单一计算丢失的数据无法达到效果,便采用重新计算该步骤中的所有数据,从而会导致计算数据重复:对于窄依赖而言,由于窄依赖实质是指父RDD的分区最多被一个子RDD使用,在此情况下出现部分计算的错误,由于计算结果的数据只与依赖的父RDD的相关数据有关,所以不需要重新计算所有数据,只重新计算出…
Apache Spark 2.2.0 新特性详细介绍
本章内容: 待整理 参考文献: Apache Spark 2.2.0新特性详细介绍 Introducing Apache Spark 2.2…
Spark之RDD弹性特性
RDD作为弹性分布式数据集,它的弹性具体体现在以下七个方面. 1.自动进行内存和磁盘数据存储的切换 Spark会优先把数据放到内存中,如果内存实在放不下,会放到磁盘里面,不但能计算内存放下的数据,也能计算内存放不下的数据.如果实际数据大于内存,则要考虑数据放置策略和优化算法.当应用程序内存不足时,Spark应用程序将数据自动从内存存储切换到磁盘存储,以保障其高效运行. 2.基于Lineage(血统)的高效容错机制 Lineage是基于Spark RDD的依赖关系来完成的(依赖分为窄依赖和宽依赖两…
Spark架构与原理这一篇就够了
一.基本介绍 是什么? 快速,通用,可扩展的分布式计算引擎. 弹性分布式数据集RDD RDD(Resilient Distributed Dataset)弹性分布式数据集,是Spark中最基本的数据(逻辑)抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合. RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 基本概念 基本流程 二.Hadoop和Spark的区别 S…
Spark核心—RDD初探
本文目的 最近在使用Spark进行数据清理的相关工作,初次使用Spark时,遇到了一些挑(da)战(ken).感觉需要记录点什么,才对得起自己.下面的内容主要是关于Spark核心-RDD的相关的使用经验和原理介绍,作为个人备忘,也希望对读者有用. 为什么选择Spark 原因如下 代码复用:使用Scala高级语言操作Spark,灵活方便,面向对象,函数编程的语言特性可以全部拿来.Scala基本上可以无缝集成java及其相关库.最重要的是,可以封装组件,沉淀工作,提高工作效率…
深度剖析Spark分布式执行原理
让代码分布式运行是所有分布式计算框架需要解决的最基本的问题. Spark是大数据领域中相当火热的计算框架,在大数据分析领域有一统江湖的趋势,网上对于Spark源码分析的文章有很多,但是介绍Spark如何处理代码分布式执行问题的资料少之又少,这也是我撰写文本的目的. Spark运行在JVM之上,任务的执行依赖序列化及类加载机制,因此本文会重点围绕这两个主题介绍Spark对代码分布式执行的处理.本文假设读者对Spark.Java.Scala有一定的了解,代码示例基于Scala,Spark源码基于2.…
Spark生态以及原理
spark 生态及运行原理 Spark 特点 运行速度快 => Spark拥有DAG执行引擎,支持在内存中对数据进行迭代计算.官方提供的数据表明,如果数据由磁盘读取,速度是Hadoop MapReduce的10倍以上,如果数据从内存中读取,速度可以高达100多倍. 适用场景广泛 => 大数据分析统计,实时数据处理,图计算及机器学习 易用性 => 编写简单,支持80种以上的高级算子,支持多种语言,数据源丰富,可部署在多种集群中 容错性高.Spark引进了弹性分布式数据集RDD (Resil…