本課主題 大数据性能调优的本质 Spark 性能调优要点分析 Spark 资源使用原理流程 Spark 资源调优最佳实战 Spark 更高性能的算子 引言 我们谈大数据性能调优,到底在谈什么,它的本质是什么,以及 Spark 在性能调优部份的要点,这两点让在进入性能调优之前都是一个至关重要的问题,它的本质限制了我们调优到底要达到一个什么样的目标或者说我们是从什么本源上进行调优.希望这篇文章能为读者带出以下的启发: 了解大数据性能调优的本质 了解 Spark 性能调优要点分析 了解 Spark 在…
转载:http://www.cnblogs.com/jcchoiling/p/6440709.html 一.大数据性能调优的本质 编程的时候发现一个惊人的规律,软件是不存在的!所有编程高手级别的人无论做什么类型的编程,最终思考的都是硬件方面的问题!最终思考都是在一秒.一毫秒.甚至一纳秒到底是如何运行的,并且基于此进行算法实现和性能调优,最后都是回到了硬件! 在大数据性能的调优,它的本质是硬件的调优!即基于 CPU(计算).Memory(存储).IO-Disk/ Network(数据交互) 基础上…
本课主题 大数据性能调优的本质 Spark 性能调优要点分析 Spark 资源使用原理流程 Spark 资源调优最佳实战 Spark 更高性能的算子 引言 我们谈大数据性能调优,到底在谈什么,它的本质是什么,以及 Spark 在性能调优部份的要点,这两点让在进入性能调优之前都是一个至关重要的问题,它的本质限制了我们调优到底要达到一个什么样的目标或者说我们是从什么本源上进行调优.希望这篇文章能为读者带出以下的启发: 了解大数据性能调优的本质 了解 Spark 性能调优要点分析 了解 Spark 在…
资源参数调优 了解完了Spark作业运行的基本原理之后,对资源相关的参数就容易理解了.所谓的Spark资源参数调优,其实主要就是对Spark运行过程中各个使用资源的地方,通过调节各种参数,来优化资源使用的效率,从而提升Spark作业的执行性能.以下参数就是Spark中主要的资源参数,每个参数都对应着作业运行原理中的某个部分,我们同时也给出了一个调优的参考值. num-executors 参数说明:该参数用于设置Spark作业总共要用多少个Executor进程来执行.Driver在向YARN集群管…
----本节内容------- 1.遗留问题解答 2.Spark调优初体验 2.1 利用WebUI分析程序瓶颈 2.2 设置合适的资源 2.3 调整任务的并发度 2.4 修改存储格式 3.Spark调优经验 3.1 Spark原理及调优工具 3.2 运行环境优化 3.2.1 防止不必要的分发 3.2.2 提高数据本地性 3.2.3 存储格式选择 3.2.4 选择高配机器 3.3 优化操作符 3.3.1 过滤操作导致多小任务 3.3.2 降低单条记录开销 3.3.3 处理数据倾斜或者任务倾斜 3.…
1.Spark企业级应用开发和调优 Spark项目编程优化历程记录,主要介绍了Spark企业级别的开发过程中面临的问题和调优方法.包含合理分配分片,避免计算中间结果(大数据量)的collect,合理使用map,优化广播变量等操作,降低网络和磁盘IO,提高计算效率. 2.核心技术优化方法对比 首先如下图(2.1),Spark应用开发在集群(伪分布式)中的记录,每一种不同颜色的折线代表一个分布式机器 最终,图4中四条折线并行达到峰值(即CPU100%).降低了处理时间,增大了处理效率. 2.1.重要…
相信大家看过无数的MySQL调优经验贴了,会告诉你各种调优手段,如: 避免 select *: join字段走索引: 慎用in和not in,用exists取代in: 避免在where子句中对字段进行函数操作: 尽量避免更新聚集索引: group by如果不需要排序,手动加上 order by null: join选择小表作为驱动表: order by字段尽量走索引... 其中有些手段也许跟随者MySQL版本的升级过时了.我们真的需要背这些调优手段吗?我觉得是没有必要的,在掌握MySQL存储架构…
JVM性能调优方法和步骤1.监控GC的状态2.生成堆的dump文件3.分析dump文件4.分析结果,判断是否需要优化5.调整GC类型和内存分配6.不断分析和调整JVM调优参数参考 对JVM内存的系统级的调优主要的目的是减少GC的频率和Full GC的次数.1.Full GC会对整个堆进行整理,包括Young.Tenured和Perm.Full GC因为需要对整个堆进行回收,所以比较慢,因此应该尽可能减少Full GC的次数.2.导致Full GC的原因年老代(Tenured)被写满调优时尽量让对…
JVM内存调优 对JVM内存的系统级的调优主要的目的是减少GC的频率和Full GC的次数. 1.Full GC 会对整个堆进行整理,包括Young.Tenured和Perm.Full GC因为需要对整个堆进行回收,所以比较慢,因此应该尽可能减少Full GC的次数. 2.导致Full GC的原因 1)年老代(Tenured)被写满 调优时尽量让对象在新生代GC时被回收.让对象在新生代多存活一段时间和不要创建过大的对象及数组避免直接在旧生代创建对象 . 2)持久代Pemanet Generati…
概述 本文介绍GC基础原理和理论,GC调优方法思路和方法,基于Hotspot jdk1.8,学习之后将了解如何对生产系统出现的GC问题进行排查解决 阅读时长约30分钟,内容主要如下: GC基础原理,涉及调优目标,GC事件分类.JVM内存分配策略.GC日志分析等 CMS原理及调优 G1原理及调优 GC问题排查和解决思路 GC基础原理 1 GC调优目标 大多数情况下对 Java 程序进行GC调优, 主要关注两个目标:响应速度.吞吐量 响应速度(Responsiveness) 响应速度指程序或系统对一…
概述 本文介绍GC基础原理和理论,GC调优方法思路和方法,基于Hotspot jdk1.8,学习之后将了解如何对生产系统出现的GC问题进行排查解决 阅读时长约30分钟,内容主要如下: GC基础原理,涉及调优目标,GC事件分类.JVM内存分配策略.GC日志分析等 CMS原理及调优 G1原理及调优 GC问题排查和解决思路 GC基础原理 1 GC调优目标 大多数情况下对 Java 程序进行GC调优, 主要关注两个目标:响应速度.吞吐量 响应速度(Responsiveness) 响应速度指程序或系统对一…
Spark性能优化指南-高级篇(spark shuffle) 非常好的讲解…
JVM底层原理及调优 1.java虚拟机内存模型(JVM内存模型) 1.堆(-Xms -Xmx -Xmn) java堆,也称为GC堆,是JVM中所管理的内存中最大的一块内存区域,是线程共享的,在JVM启动时创建.存放了对象的实例及数组(所有new的对象), 无论是成员变量,局部变量,还是类变量,它们指向的对象都存储在堆内存中: 2.线程栈 每个线程存在一个独立的线程栈内存区域,每个线程栈内存中会为每个方法创建各自的栈帧,栈帧中包含:局部变量表.操作数栈.动态链接.方法出口等: 栈中存放:方法调用…
一.工作原理剖析 1.图解 二.性能优化 1.设置Shuffle过程中的并行度:spark.sql.shuffle.partitions(SQLContext.setConf()) 2.在Hive数据仓库建设过程中,合理设置数据类型,比如能设置为INT的,就不要设置为BIGINT.减少数据类型导致的不必要的内存开销. 3.编写SQL时,尽量给出明确的列名,比如select name from students.不要写select *的方式. 4.并行处理查询结果:对于Spark SQL查询的结果…
Perf -- Linux下的系统性能调优工具,第 1 部分 应用程序调优的使用和示例 https://www.ibm.com/developerworks/cn/linux/l-cn-perf1/index.html Perf -- Linux下的系统性能调优工具,第 2 部分 特殊用法以及内核调优示例 https://www.ibm.com/developerworks/cn/linux/l-cn-perf2/index.html…
转载自:http://www.tuicool.com/articles/7VNfyif 王联辉,曾在腾讯,Intel 等公司从事大数据相关的工作.2013 年 - 2016 年先后负责腾讯 Yarn 集群和 Spark 平台的运营与研发.曾负责 Intel Hadoop 发行版的 Hive 及 HBase 版本研发.参与过百度用户行为数据仓库的建设和开发,以及淘宝数据魔方和淘宝指数的数据开发工作.给 Spark 社区贡献了 25+ 个 patch,接受的重要特性有 python on yarn-…
spark 生态及运行原理 Spark 特点 运行速度快 => Spark拥有DAG执行引擎,支持在内存中对数据进行迭代计算.官方提供的数据表明,如果数据由磁盘读取,速度是Hadoop MapReduce的10倍以上,如果数据从内存中读取,速度可以高达100多倍. 适用场景广泛 => 大数据分析统计,实时数据处理,图计算及机器学习 易用性 => 编写简单,支持80种以上的高级算子,支持多种语言,数据源丰富,可部署在多种集群中 容错性高.Spark引进了弹性分布式数据集RDD (Resil…
文章正文 通过文章“Spark 核心概念RDD”我们知道,Spark的核心是根据RDD来实现的,Spark Scheduler则为Spark核心实现的重要一环,其作用就是任务调度.Spark的任务调度就是如何组织任务去处理RDD中每个分区的数据,根据RDD的依赖关系构建DAG,基于DAG划分Stage,将每个Stage中的任务发到指定节点运行.基于Spark的任务调度原理,我们可以合理规划资源利用,做到尽可能用最少的资源高效地完成任务计算. 1.分布式运行框架 Spark可以部署在多种资源管理平…
收录待用,修改转载已取得腾讯云授权 作者 | 蒋专 蒋专,现CDG事业群社交与效果广告部微信广告中心业务逻辑组员工,负责广告系统后台开发,2012年上海同济大学软件学院本科毕业,曾在百度凤巢工作三年,2016年入职微信广告中心. 导语 spark 已经成为广告.报表以及推荐系统等大数据计算场景中首选系统,因效率高,易用以及通用性越来越得到大家的青睐,我自己最近半年在接触spark以及spark streaming之后,对spark技术的使用有一些自己的经验积累以及心得体会,在此分享给大家. 本文…
调优概述 在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置.资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢:或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常.总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行.因此我们必须对Spark作…
Spark Streaming应用也是Spark应用,Spark Streaming生成的DStream最终也是会转化成RDD,然后进行RDD的计算,所以Spark Streaming最终的计算是RDD的计算,那么Spark Streaming的原理当然也包含了Spark应用通用的原理.Spark Streaming作为实时计算的技术,和其他的实时计算技术(比如Storm)不太一样,我们可以将Spark Streaming理解为micro-batch模式的实时计算,也就是说Spark Strea…
前面几天元旦过high了,博客也停了一两天,哈哈,今天我们重新开始,今天我们介绍的是spark的原理 首先先说一个小贴士: spark中,对于var count = 0,如果想使count自增,我们不能使用count++,而是我们要使用count = count + 1 接下来开始我们的正经事了,介绍spark的工作原理,先放上一张原理图 从这个图我们可以看出,当一个任务提交的时候,我们就可以调用调用Master,然后Master在找资源充沛的Worker,对于我们而言,如果我们写了一Spark…
一.Spark RDD容错原理 RDD不同的依赖关系导致Spark对不同的依赖关系有不同的处理方式. 对于宽依赖而言,由于宽依赖实质是指父RDD的一个分区会对应一个子RDD的多个分区,在此情况下出现部分计算结果丢失,单一计算丢失的数据无法达到效果,便采用重新计算该步骤中的所有数据,从而会导致计算数据重复:对于窄依赖而言,由于窄依赖实质是指父RDD的分区最多被一个子RDD使用,在此情况下出现部分计算的错误,由于计算结果的数据只与依赖的父RDD的相关数据有关,所以不需要重新计算所有数据,只重新计算出…
paip.utf-8,unicode编码的本质输出unicode文件原理 python      #别的语言,java php都是unicode,走十python不一样.    #enddef  #todo write to unicode encode fileHandle = open ( r"c:\fmtSmpEnRst.txt", 'w',encoding="UTF-16" )        #todox utf8 not decode...now  UTF…
Apache Spark的工作原理 1 Why Apache Spark 2 关于Apache Spark 3 如何安装Apache Spark 4 Apache Spark的工作原理 5 spark弹性分布式数据集 6 RDD持久性 7 spark共享变量 8 Spark SQL 9 Spark Streaming 原文链接:http://blogxinxiucan.sh1.newtouch.com/2017/07/23/Apache-Spark%E7%9A%84%E5%B7%A5%E4%BD…
基于Spark和SparkSQL的NetFlow流量的初步分析--scala语言 标签: NetFlow Spark SparkSQL 本文主要是介绍如何使用Spark做一些简单的NetFlow数据的处理,是基于 IntelliJ IDEA开发Spark 的Maven项目,本文会介绍一些简单的NetFlow基础知识,以及如何在 IntelliJ IDEA 上开发Maven项目,用Scala 写的一些简单的NetFlow字段分析统计的代码,包括 SparkCore和SparkSQL两个版本的. 初…
Spark分布式执行原理 让代码分布式运行是所有分布式计算框架需要解决的最基本的问题. Spark是大数据领域中相当火热的计算框架,在大数据分析领域有一统江湖的趋势,网上对于Spark源码分析的文章有很多,但是介绍Spark如何处理代码分布式执行问题的资料少之又少,这也是我撰写文本的目的. Spark运行在JVM之上,任务的执行依赖序列化及类加载机制,因此本文会重点围绕这两个主题介绍Spark对代码分布式执行的处理.本文假设读者对Spark.Java.Scala有一定的了解,代码示例基于Scal…
一.数据接收原理 二.源码分析 入口包org.apache.spark.streaming.receiver下ReceiverSupervisorImpl类的onStart()方法 ### override protected def onStart() { // 这里的blockGenerator很重要,和数据接收有关,其运行在worker的executor端负责数据接收后的一些存取工作,以及配合ReceiverTracker // 在Executor上,启动Receiver之前,就会先启动这…
本文主要讲述如何利用 Spark Connector 进行 Nebula Graph 数据的读取. Spark Connector 简介 Spark Connector 是一个 Spark 的数据连接器,可以通过该连接器进行外部数据系统的读写操作,Spark Connector 包含两部分,分别是 Reader 和 Writer,而本文侧重介绍 Spark Connector Reader,Writer 部分将在下篇和大家详聊. Spark Connector Reader 原理 Spark C…