python之np.tile()】的更多相关文章

Numpy的tile()函数,就是将原矩阵横向.纵向地复制.tile是瓷砖的意思, 顾名思义,这个函数就是把数组像瓷砖一样铺展开来. 例1: 解释:b是一个数, 在同一个列表中把a横向铺展了21遍. 例2: 例3: 解释:相当于拓展至3行.…
>> import numpy as np >> help(np.repeat) >> help(np.tile) 二者执行的是均是复制操作: np.repeat:复制的是多维数组的每一个元素: np.tile:复制的是多维数组本身: 1. np.repeat >> x = np.arange(1, 5).reshape(2, 2) >> np.repeat(x, 2) array([1, 1, 2, 2, 3, 3, 4, 4]) # 对数组中…
>>> v = np.array([1, 0, 1])>>> vv = np.tile(v,(4,1))>>> print vv[[1 0 1] [1 0 1] [1 0 1] [1 0 1]]>>>…
1.Numpy的 tile() 函数,就是将原矩阵横向.纵向地复制.tile 是瓷砖的意思,顾名思义,这个函数就是把数组像瓷砖一样铺展开来. 举个例子,原矩阵: import numpy as np mat = np.array([[1,2], [3, 4]]) 横向: print(np.tile(mat,(1, 4))) #等同于 print(np.tile(mat, 4)) [[1 2 1 2 1 2 1 2] [3 4 3 4 3 4 3 4]] [[1 2 1 2 1 2 1 2] [3…
output   array([[ 0.24747071, -0.43886742],   [-0.03916734, -0.70580089],   [ 0.00462337, -0.51431584],   ...,   [ 0.15071507, -0.57029653],   [ 0.06246116, -0.33766761],   [ 0.08218585, -0.59906501]], dtype=float32)       ipdb> np.shape(output)   (6…
以上三个函数,主要区别在于能够拓展维度上和重复方式: np.tile() 能够拓展维度,并且整体重复: a = np.array([0,1,2]) np.tile(a,(2,2)) # out # array([[0, 1, 2, 0, 1, 2], [0, 1, 2, 0, 1, 2]]) 2. np.repeat()能够将多维flatten一维后,进行个体重复: b = np.array([[1,2,3],[4,5,6]]) np.repeat(b,3) # out #array([1, 1…
1.tile函数: tile函数是模板numpy.lib.shape_base中的函数.函数的形式是tile(A,reps) A的类型几乎所有类型都可以:array, list, tuple, dict, matrix以及基本数据类型int, string, float以及bool类型. reps的类型也很多,可以是tuple,list, dict, array, int,bool.但不可以是float, string, matrix类型.行列重复copy的次数. 例子: >>> til…
转载:https://www.cnblogs.com/ghllfl/p/8487692.html np.arange()经常用,其用法总结如下: np.arange(0,60,2) 生成从0到60的步距为2的数组,其中0为初始值,60为终值,2步距, np.arange(60) 生成从0到59的默认步距为1的数组Python程序示例: import numpy as npprint(np.arange(0,60,2))print(np.arange(60))print(np.arange(1,6…
为了区分三种乘法运算的规则,具体分析如下: import numpy as np 1. np.multiply()函数 函数作用 数组和矩阵对应位置相乘,输出与相乘数组/矩阵的大小一致 1.1数组场景 [code] A = np.arange(1,5).reshape(2,2) A [result] array([[1, 2], [3, 4]]) [code] B = np.arange(0,4).reshape(2,2) B [result] array([[0, 1], [2, 3]]) […
# -*- coding: utf-8 -*-"""Created on Sat Jun 30 14:49:22 2018 @author: zhen""" import numpy as npa = np.array([[1,2,3],[11,22,33]])b = np.array([[4,5,6],[44,55,66]])# 数组连接成矩阵c = np.c_[a,b]r = np.r_[a,b]print('-------------按行转…