一.摘要 为了解决协同过滤的稀疏性和冷启动问题,社交网络或项目属性等辅助信息被用来提高推荐性能. 考虑到知识图谱是边信息的来源,为了解决现有的基于嵌入和基于路径的知识图谱感知重构方法的局限性,本文提出了一种端到端框架,它自然地将知识图结合到推荐系统中. 与水上传播的实际涟漪类似,RippleNet通过在知识图谱实体集上传播用户兴趣,从而自主迭代地沿着知识图谱中的链接来扩展用户的潜在兴趣. 因此,由用户的历史点击项激活的多个“涟漪”被叠加以形成用户相对于候选项目的偏好分布,该偏好分布可用于预测最终…
什么是Knowledge Graph? 它是google用于增强它的搜索引擎的功能和提高搜索结果质量的一种技术.在2012年5月16日提出,除了提供基本的与主题相关的链接服务之外,它还能结构化与主题相关的信息.这样做的目的就是让用户无需通过点击多个相关链接自己手动去搜索相关信息,而是google直接把整合好的结果展示在搜索页面,真是太贴心啦! for example: 我在google中搜索:andrew ng 可以看到,右侧会直接把andrew ng的相关基本资料给你整合好.比如出生,教育背景…
发表于2013-01-18 11:35| 8827次阅读| 来源sina微博 条评论| 作者邓侃 数据分析智能算法机器学习大数据Google 摘要:文章来自邓侃的博客.数据革命迫在眉睫. 各大公司重兵集结.虎视眈眈.Google 兵分两路.左路以 Jeff Dean 和 Andrew Ng 为首.重点突破 Deep Learning 等等算法和应用,右路军由Amit Singhal领军,目标是构建Knowledge Graph基础设施.而在攻克技术难题之后.就是动用资本和商业的强力手段.跑马圈地…
<Exploiting Relevance Feedback in Knowledge Graph> Publication: KDD 2015 Authors: Yu Su, Shengqi Yang, etc. Affiliation: UCSB... 1. Short description: p { margin-bottom: 0.1in; line-height: 120% } a:link { } This paper formulate the novice graph rel…
1. 通俗易懂解释知识图谱(Knowledge Graph) 2. 知识图谱-命名实体识别(NER)详解 3. 哈工大LTP解析 1. 前言 从一开始的Google搜索,到现在的聊天机器人.大数据风控.证券投资.智能医疗.自适应教育.推荐系统,无一不跟知识图谱相关.它在技术领域的热度也在逐年上升. 本文以通俗易懂的方式来讲解知识图谱相关的知识.尤其对从零开始搭建知识图谱过程当中需要经历的步骤以及每个阶段需要考虑的问题都给予了比较详细的解释. 知识图谱( Knowledge Graph)的概念由谷…
领军大家: Geoffrey E. Hinton http://www.cs.toronto.edu/~hinton/ 阅读列表: reading lists and survey papers for deep learning http://deeplearning.net/reading-list/ 课程和教材: Deep Learning 教程(邓侃老师力荐,已有中文版面) http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tut…
Knowledge Graph - Wikipedia https://en.wikipedia.org/wiki/Knowledge_Graph The Knowledge Graph is a knowledge base used by Google and its services to enhance its search engine's results with information gathered from a variety of sources. The informat…
知识图谱(Knowledge Graph,KG)可以理解成一个知识库,用来存储实体与实体之间的关系.知识图谱可以为机器学习算法提供更多的信息,帮助模型更好地完成任务. 在推荐算法中融入电影的知识图谱,能够将没有任何历史数据的新电影精准地推荐给目标用户. 实例描述 现有一个电影评分数据集和一个电影相关的知识图谱.电影评分数据集里包含用户.电影及评分:电影相关的知识图谱中包含电影的类型.导演等属性. 要求:从知识图谱中找出电影间的潜在特征,并借助该特征及电影评分数据集,实现基于电影的推荐系统. 本实…
前言 这篇论文主要讲的是知识图谱正确率的评估,将知识图谱的正确率定义为知识图谱中三元组表述正确的比例.如果要计算知识图谱的正确率,可以用人力一一标注是否正确,计算比例.但是实际上,知识图谱往往很大,不可能耗费这么多的人力去标注,所以一般使用抽样检测的方法.这就好像调查一批商品合格率一样,不可能将所有的商品都检查一遍,采用抽样的方法可以估计出合格率. 抽样产生的样本,我们利用中心极限定理,可以推导出样本均值服从正态分布.根据正态分布的概率形式,可以推导置信区间,并且可以要求误差界限(margin…
一.什么是知识图谱 知识(Knowledge)可以理解为 精炼的数据,知识图谱(Knowledge Graph)即是对知识的图形化表示,本质上是一种大规模语义网络 (semantic network) – 富含实体(entity). 概念(concepts) 及其之间的各种语义关系 (semantic relationships),比如 知识图谱和人工智能: 知识图谱的理想状态: 给所有IOT设备和机器人都挂一个背景知识库,因为对于人类来说,对一个事物的理解取决于这个人关于事物的相关背景知识,对…