我所写的CNN框架 VS caffe】的更多相关文章

我所写的CNN框架 VS caffe 一个月前.自己模仿caffe实现了一个卷积神经网络的框架. 同样点 1无缝支持CPU和GPU模式,GPU模式使用cuda实现. 不同点 1我的CNN不依赖与不论什么第三方的函数库,caffe用到了第三方的数学函数库(cublas和mkl)来做矩阵操作. 事实上差别就在于,caffe採用了矢量化编程的方法,如ufldl教程所说http://deeplearning.stanford.edu/wiki/index.php/%E7%9F%A2%E9%87%8F%E…
  Caffe Torch Theano TensorFlow Language C++, Python Lua Python Python Pretrained Yes ++ Yes ++ Yes (Lasagne) Inception Multi-GPU: Data parallel Yes Yes Yes Yes Multi-GPU: Model parallel No Yes Experimental Yes (best) Readable source code Yes (C++) Y…
linger博客原创性博文导航 http://blog.csdn.net/lingerlanlan 大学研究游戏外挂技术開始了此博客.断断续续写了些博文. 后来,開始机器学习和深度学习的研究工作,因为喜欢和热爱,业余时间也常常性学习.并写博文总结.因此,博文越来越多.因为博文是依据时间排序的,看起来有点乱,所以在此处写个导航. 搞了个微信号(data_bird),关注数据挖掘.机器学习 UFLDL学习笔记和编程 ufldl学习笔记与编程作业:Linear Regression(线性回归) ufl…
Caffe(卷积神经网络框架)Caffe,全称Convolution Architecture For Feature Extraction caffe是一个清晰,可读性高,快速的深度学习框架.作者是贾扬清,加州大学伯克利的ph.D,现就职于FaceBook.caffe的官网是http://caffe.berkeleyvision.org/. Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作. Caffe是纯粹的C++/CUDA…
一.神经网络为什么比传统的分类器好 1.传统的分类器有 LR(逻辑斯特回归) 或者 linear SVM ,多用来做线性分割,假如所有的样本可以看做一个个点,如下图,有蓝色的点和绿色的点,传统的分类器就是要找到一条直线把这两类样本点分开. 对于非线性可分的样本,可以加一些kernel核函数或者特征的映射使其成为一个曲线或者一个曲面将样本分开.但为什么效果不好,主要原因是你很难保证样本点的分布会如图所示那么规则,我们无法控制其分布,当绿色的点中混杂几个蓝色的点,就很难分开了,及时用曲线可以分开,这…
http://geek.csdn.net/news/detail/138968 Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自TensorFlow于2015年底正式开源,距今已有一年多,这期间TensorFlow不断给人以惊喜.在这一年多时间,TensorFlow已从初入深度学习框架大战的新星,成为了几近垄断的行业事实标准.本文节选自<TensorFlow实战>第二章. 主流深度学习框架对比 深度学习研究的热潮持续高涨,各种开源…
用于检测的CNN分为基于回归网络的方法和基于区域+CNN网络的方法,其中基于回归网络的方法典型为YOLO9000,可以兼容使用VGG-Net框架.其中基于区域+CNN网络方法,大量使用了Caffe作为基础CNN框架.  准备工作(python27环境,X64平台,使用Vs2013和Vs2015): 1. 安装 VcforPython27 9.0或者安装VS2010版本.此步骤涉及到Python库的安装是否成功. 2. 安装 Python27 X64: 3. 使用pip安装Python 包:num…
Caffe是一种深度学习框架...blablabla...... Caffe要在ubuntu下安装 1. 安装依赖 sudo apt-get install libatlas-base-dev sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev sudo apt-get install libgflags-dev li…
在单GPU下,所有这些工具集都调用cuDNN,因此只要外层的计算或者内存分配差异不大其性能表现都差不多. Caffe: 1)主流工业级深度学习工具,具有出色的卷积神经网络实现.在计算机视觉领域Caffe仍然是最流行的工具包,他有很多扩展,但是由于 一些遗留的架构问题,它对递归网络和语言建模的支持很差.此外,在caffe种图层需要使用C++定义,而网络则使用protobuf定义. 2)caffe支持pycaffe接口,但这仅仅是用来辅助命令行接口的,而即便是是使用pycaffe也必须使用Proto…
开源框架与迁移 上面介绍了一些已经取得很好成绩的CNN框架,我们可以直接从GitHub上下载这些神经网络的结构和已经在ImageNet等数据集上训练好的权重超参数. 在应用于我们自己的数据时. 1.如果我们的数据集很小,我们可以采用对原框架和权重都保持不变,只更改最后的output层实现迁移. 2.如果我们的数据集大小中等,可以尝试冻结原框架的前面多层,对其后的层数进行更改. 3.如果我们的数据集很大,可以在原架构上尝试新的训练,不采用预训练的权重,还可以自行更改模型,做更多的尝试. CNN中的…