首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
7.12模拟T2(套路容斥+多项式求逆)
】的更多相关文章
7.12模拟T2(套路容斥+多项式求逆)
Description: \(n<=10,max(w)<=1e6\) 题解: 考虑暴力,相当于走多维格子图,不能走有些点. 套路就是设\(f[i]\)表示第一次走到i的方案数 \(f[i]=起点到点i的方案数-\sum_{j在i前面}f[j]*j到i的方案数\) 不妨把前缀和后缀的分开,设为f和g. f上的点形如(i,i,-) 设\(m=min(w)\),\(w-=m\) 则g上的点形如(w+i,--) 这样就顺序了. 且\(i->j的方案数\)之和坐标差有关,那就可以分治NTT了. 还…
LOJ2527 HAOI2018 染色 容斥、生成函数、多项式求逆
传送门 调了1h竟然是因为1004535809写成了998244353 "恰好有\(K\)种颜色出现了\(S\)次"的限制似乎并不容易达到,考虑容斥计算. 令\(c_j\)表示强制\(j\)种颜色恰好出现\(S\)次,其他颜色随意染的方案数.可以通过生成函数知道 \(\begin{align*} c_j &= \binom{m}{j} n! [x^n] (\frac{x^k}{k!})^j (\sum\limits_{i=0}^\infty \frac{x^i}{i!})^{m…
2018.12.30 洛谷P4238 【模板】多项式求逆
传送门 多项式求逆模板题. 简单讲讲? 多项式求逆 定义: 对于一个多项式A(x)A(x)A(x),如果存在一个多项式B(x)B(x)B(x),满足B(x)B(x)B(x)的次数小于等于A(x)A(x)A(x)且A(x)B(x)≡1mod  xnA(x)B(x)≡1 \mod x^nA(x)B(x)≡1modxn,那么我们称B(x)为A(x)A(x)A(x)在模xnx^nxn意义下的逆元,简单记作A−1(x)A^{−1}(x)A−1(x) 求法: n…
P6295-有标号 DAG 计数【多项式求逆,多项式ln】
正题 题目链接:https://www.luogu.com.cn/problem/P6295 题目大意 求所有\(n\)个点的弱联通\(DAG\)数量. \(1\leq n\leq 10^5\) 解题思路 先不考虑弱联通的限制,求\(n\)个点的\(DAG\)数量. 设为\(f_i\),那么有式子 \[f_n=\sum_{i=1}^{n}\binom{n}{i}2^{i(n-i)}f_{n-i}(-1)^{i+1} \] 这个式子的意思是说新建一层出度为\(0\)的点,\(\binom{n}{i…
BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林数 \] 首先你要把这个组合计数肝出来,于是我去翻了一波<组合数学> 用斯特林数容斥原理推导那个式子可以直接出卷积形式,见下一篇,本篇是分治fft做法 组合计数 斯特林数 \(S(n,i)\)表示将n个不同元素划分成i个相同集合非空的方案数 Bell数 \(B(n)=\sum\limits_{i=…
Re.多项式求逆
前言 emmm暂无 多项式求逆目的 顾名思义 就是求出一个多项式的摸xn时的逆 给定一个多项式F(x),请求出一个多项式G(x),满足F(x)∗G(x)≡1(modxn),系数对998244353取模. 多项式求逆主要思路 我们考虑用递推的做法 假设我们当前已知F(x)H(x)=1(mod xi/2) 要求的是F(x)Q(x)=1(mod xi) 因为F(x)Q(x)=1(mod xi) 所以F(x)Q(x)=1(mod xi/2) 可得F(x)(Q(x)-H(x))=0(mod xi/2) 显…
BZOJ 3456: 城市规划 与 多项式求逆算法介绍(多项式求逆, dp)
题面 求有 \(n\) 个点的无向有标号连通图个数 . \((1 \le n \le 1.3 * 10^5)\) 题解 首先考虑 dp ... 直接算可行的方案数 , 容易算重复 . 我们用总方案数减去不可行的方案数就行了 (容斥) 令 \(f_i\) 为有 \(i\) 个点的无向有标号连通图个数 . 考虑 \(1\) 号点的联通块大小 , 联通块外的点之间边任意 但 不能与 \(1\) 有间接联系 . 那么就有 \[\displaystyle f_i = 2^{\binom i 2} - \s…
【BZOJ3456】轩辕朗的城市规划 无向连通图计数 CDQ分治 FFT 多项式求逆 多项式ln
题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\frac{i(i-1)}{2}} \] \[ \begin{align} g_i&=f_i-\sum_{j=1}^{i-1}\binom{n-1}{j-1}g_jf_{i-j}\\ &=f_i-(i-1)!\sum_{j=1}^{i-1}\frac{g_j}{(j-1)!}\frac{f_{i-…
【bzoj3456】城市规划(多项式求逆+dp)
Description 求\(~n~\)个点组成的有标号无向连通图的个数.\(~1 \leq n \leq 13 \times 10 ^ 4~\). Solution 这道题的弱化版是poj1737, 其中\(n \leq 50\), 先来解决这个弱化版的题.考虑\(~dp~\),直接统计答案难以入手,于是考虑容斥.显然有,符合条件的方案数\(=\)所有方案数\(-\)不符合条件的方案数,而这个不符合条件的方案数就是图没有完全联通的情况.设\(~dp_i~\)表示\(~i~\)个点组成的合法方案…
BZOJ1042 HAOI2008硬币购物(任意模数NTT+多项式求逆+生成函数/容斥原理+动态规划)
第一眼生成函数.四个等比数列形式的多项式相乘,可以化成四个分式.其中分母部分是固定的,可以多项式求逆预处理出来.而分子部分由于项数很少,询问时2^4算一下贡献就好了.这个思路比较直观.只是常数巨大,以及需要敲一发类似任意模数ntt的东西来避免爆精度.成功以这种做法拿下luogu倒数rank1,至于bzoj不指望能过了. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib>…