【SDOI2017】套路总结】的更多相关文章

[SDOI2017]数字表格 由于使用markdown的关系 我无法很好的掌控格式,见谅 对于这么简单的一道题竟然能在洛谷混到黑,我感到无语 \[\begin{align*} \prod\limits^{n}_{i=1} \prod\limits^{m}_{j=1} fi[gcd(i,j)] &= \prod\limits^{n}_{d=1} fi[d]^{\sum\limits_{e=1}^{n} [n/de][m/de]\mu(e)} \\ &= \prod\limits^{n}_{T…
1 第一题是裸的反演: \[\begin{align} Ans&=\prod_{i=1}^n\prod_{j=1}^ma[(i,j)]\\ &=\prod_{d=1}^na[d]^{f(d)}\\ f(d)&=\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{n}{id}\rfloor\lfloor\frac{m}{id}\rfloor\mu(i) \end{align}\] 考虑更换为枚举\(i*d\), 那么就有, \[\be…
[Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ \prod_{d=1}^n \prod_{i=1}^{\frac{n}{d}}\prod_{i=1}^{\frac{m}{d}} f[d]^{[(i,j)=1]} \] 套路一直推完 \[ \prod_{D=1}^n \prod_{d|D} f[d]^{\mu(\frac{D}{d}) \cdot…
[SDOI2017]遗忘的集合 综合了很多套路的题 一看就是完全背包 生成函数! 转化为连乘积形式 Pi....=F 求Ln! 降次才可以解方程 发现方程是: f[i]=∑t|i : bool(t)*t/i f[i]*i=∑t|i : bool(t)*t f=g*1(*是狄利克雷卷积) 所以,g=f*1 构造得到的解是唯一的,所以其实解是唯一的. O(nlogn) (多项式全家桶多项式全家桶) int main(){ int n;rd(n);rd(mod); Poly f; f.resize(n…
这套题实在是太神仙了..做了我好久...好多题都是去搜题解才会的 TAT. 剩的那道题先咕着,如果省选没有退役就来填吧. 「SDOI2017」龙与地下城 题意 丢 \(Y\) 次骰子,骰子有 \(X\) 面,每一面的概率均等,取值为 \([0, X)\) ,问最后取值在 \([a, b]\) 之间的概率. 一个浮点数,绝对误差不超过 \(0.013579\) 为正确. 数据范围 每组数据有 \(10\) 次询问. \(100\%\) 的数据,\(T \leq 10\),\(2 \leq X \l…
我们 TM 怎么又要上文化课..我 哔哔哔哔哔哔 「SDOI2017」数字表格 题意 有 \(T\) 组数据,求 \[ \prod_{i = 1}^{n} \prod_{j = 1}^{m} fib[\gcd(i, j)] \] $ 1 \leq n, m \leq 10 ^ 6, 1 \leq T \leq 1000 $ 题解 又是一道莫比乌斯反演套路题.. \[ \begin{aligned} &\prod_{i = 1}^{n} \prod_{j = 1}^{m} fib[\gcd(i,…
01分数规划:通常的问法是:在一张有 \(n\) 个点,\(m\) 条边的有向图中,每一条边均有其价值 \(v\) 与其代价 \(w\):求在图中的一个环使得这个环上所有的路径的权值和与代价和的比率最小\大.即求 \(\frac{\sum v}{\sum w}\) 的最小值\最大值. 通常的解法也是比较固定的,我们首先假设求最大值,最优的答案为 \(L\),\(L = \frac{\sum v}{\sum w}\).接下来我们对于这个式子进行变形: \(L * \sum w = \sum v\)…
P3704 [SDOI2017]数字表格 首先根据题意写出答案的表达式 \[\large\prod_{i=1}^n\prod_{j=1}^mf_{\gcd(i,j)} \] 按常规套路改为枚举 \(d=\gcd(i,j)\) (不妨设 \(n\le m\) ) \[\large\prod_{d=1}^n{f_d}^{\sum_{i=1}^n\sum_{j=1}^m~[(i,j)=d]} \] 指数上的式子很熟悉了,单独拿出来推一下 \[\begin{aligned} \sum_{i=1}^n\s…
iOS app内存分析套路 Xcode下查看app内存使用情况有2中方法: Navigator导航栏中的Debug navigator中的Memory Instruments 一.Debug navigator中的Memory 此方法是查看内存最简单直接有效的方法,真机调试时,通过Debug navigator中Memory查看app内存,入口如图 根据这个值查看app内存占用,这个内存是当前app占用的总内存,是堆栈内存.虚拟内存(OpenGL占用的显存算在虚拟内存中里面)的总和. 二.Ins…
玩游戏的人 很多时候都会遇到翻牌子  开宝箱. 总有人傻傻的在哪里还纠结很久到底点哪一个! 纠结  指不定翻哪一个会多一点,你明明看到那个卡片的奖项多 . 那我就告诉你好了  其实很多时候在你点开那个页面的时候你的翻牌结果已经随着你点开而请求到了. 接下来 就是一些动画效果 然后告诉你的中奖结果是什么. 其实就很像你看的那种街头,赌碗 一个样子. 为什么 你的大号 总是什么奖都抽不到  小号总是能够抽到一些东西. 其实就是游戏策划对用户的一些粘度数据的分析   还有就是对你用户的衰减做的一些统计…