Bloom Filter解析】的更多相关文章

布隆过滤器简介:https://www.cnblogs.com/Jack47/p/bloom_filter_intro.html 布隆过滤器详解:原文链接:http://www.cnblogs.com/allensun/archive/2011/02/16/1956532.html 布隆过滤器解析:https://www.cnblogs.com/liyulong1982/p/6013002.html 布隆过滤器 (Bloom Filter)是由Burton Howard Bloom于1970年提…
Bloom Filter,即布隆过滤器,是一种空间效率很高的随机数据结构. 原理:开辟m个bit位数组的空间,并全部置零,使用k个哈希函数将元素映射到数组中,相应位置1.如下图,元素K通过哈希函数h1,h2,h3在数组上置1. LevelDB中加入bloom filter的支持.目前针对一次查询,LevelDB可能需要在每个level上进行一次磁盘随机访问.通过使用bloom filter可以大大减少所需要的磁盘I/O操作.比如,假设调用者正在查找一个值为"Foo"的key,Level…
在爬虫系统中,在内存中维护着两个关于URL的队列,ToDo队列和Visited队列,ToDo队列存放的是爬虫从已经爬取的网页中解析出来的即将爬取的URL,但是网页是互联的,很可能解析出来的URL是已经爬取到的,因此需要VIsited队列来存放已经爬取过的URL.当爬虫从ToDo队列中取出一个URL的时候,先和Visited队列中的URL进行对比,确认此URL没有被爬取后就可以下载分析来.否则舍弃此URL,从Todo队列取出下一个URL继续工作. 然后,我们知道爬虫在爬取网页时,网页的量是比较大的…
scrapy-redis + Bloom Filter分布式爬取tencent社招信息 什么是scrapy-redis 什么是 Bloom Filter 为什么需要使用scrapy-redis + Bloom Filter 目标任务 安装爬虫 创建爬虫 编写 items.py 编写 spiders/tencent.py 编写 pipelines.py 编写 middlewares.py 编写 settings.py 搭建 redis 运行爬虫 结语 备注 什么是scrapy-redis 虽然 s…
Bloom Filter一般用于数据的去重计算,近似于HashSet的功能:但是不同于Bitmap(用于精确计算),其为一种估算的数据结构,存在误判(false positive)的情况. 1. 基本原理 Bloom Filter能高效地表征数据集合\(S = \lbrace x_1 ,x_2 ,...,x_n \rbrace\),判断某个数据是否属于这个集合.其基本思想如下:用长度为\(m\)的位数组\(A\)来存储集合信息,同时是有\(k\)个独立的hash函数\(h_i(1\le i \l…
阅读目录: 背景介绍 算法原理 误判率 BF改进 总结 背景介绍 Bloom filter(后面简称BF)是Bloom在1970年提出的二进制向量数据结构.通俗来说就是在大数据集合下高效判断某个成员是否属于这个集合.BF其优点在于: 插入和查询复杂度都是O(n) 空间利用率极高. 例子1: 像Yahoo这类的公共邮件服务提供商,总是需要过滤垃圾邮件. 假设有50亿个邮件地址,需要存储过滤的方法有: 所有邮件地址都存储到数据库. 缺点:每次都需要查询数据库,效率低. 使用Hashtable保存到内…
Bloom Filter 是由伯顿.布隆(Burton Bloom)在1970年提出的一种多hash函数映射的快速查找算法.它实际上是一个很长的二进制向量和一些列随机映射函数.应用在数据量很大的情况下. 算法 初始化一个m比特的值全为0的向量.选择k个不同的散列函数,散列函数的产生的值域范围是0~m-1. 1)元素加入过滤器    对于元素e1,通过k个散列函数分别产生了值为 h1 ,h2, ..., hk :    将二进制向量的第 h1 ,h2, ..., hk 位分别置为1:     2)…
参考文献: Bloom Filters - the math    http://pages.cs.wisc.edu/~cao/papers/summary-cache/node8.html    Bloom Filter概念和原理    http://blog.csdn.net/jiaomeng/article/details/1495500    BloomFilter--大规模数据处理利器    http://www.cnblogs.com/heaad/archive/2011/01/02…
原文:蘑菇先生,http://www.cnblogs.com/mushroom/p/4556801.html 背景介绍 Bloom filter(后面简称BF)是Bloom在1970年提出的二进制向量数据结构.通俗来说就是在大数据集合下高效判断某个成员是否属于这个集合.BF其优点在于: 插入和查询复杂度都是O(n) 空间利用率极高. 例子1: 像Yahoo这类的公共邮件服务提供商,总是需要过滤垃圾邮件. 假设有50亿个邮件地址,需要存储过滤的方法有: 所有邮件地址都存储到数据库.缺点:每次都需要…
Bloom filter 是由 Howard Bloom 在 1970 年提出的二进制向量数据结构,它具有很好的空间和时间效率,被用来检测一个元素是不是集合中的一个成员. 结    构 二进制 召回率 100% 方    法 哈希函数 目录 1 简介 2 计算方法 3 优点缺点 4 简单例子 简介 编辑 Bloom filter 是由 Howard Bloom 在 1970 年提出的二进制向量数据结构,它具有很好的空间和时间效率,被用来检测一个元素是不是集合中的一个成员.如果检测结果为是,该元素…