下面的代码是在python3中运行, # -*- coding: utf-8 -*- """ Created on Tue Jul 3 17:29:27 2018 @author: Administrator """ from numpy import * #NumPy import operator #运算符模块 def createDataSet(): #这个只是导入数据的函数 group=array([[1.0,1.1],[1.0,1.0]…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第12章 - 使用FP-growth算法来高效发现频繁项集. 基本概念 FP-growth算法 FP-growth算法的性能很好,只需要扫描两次数据集,就能生成频繁项集.但不能用于发现关联规则. 我想应该可以使用Apriori算法发现关联规则. FP代表频繁模式(Frequent Pattern). 条件模式基(conditional pattern base). 条件模式基是以所查找元素项为结…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第11章 - 使用Apriori算法进行关联分析. 基本概念 关联分析(association analysis)或者关联规则学习(association rule learning) 这是非监督学习的一个特定的目标:发现数据的关联(association)关系.简单的说,就是那些数据(或者数据特征)会一起出现. 关联分析的目标包括两项:发现频繁项集和发现关联规则.首先需要找到频繁项集,然后才能…
 一. K邻近算法思想:存在一个样本数据集合,称为训练样本集,并且每个数据都存在标签,即我们知道样本集中每一数据(这里的数据是一组数据,可以是n维向量)与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征(向量的每个元素)与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似的的分类标签.由于样本集可以很大,我们选取前k个最相似数据,然后统计k个数据中出现频率最高的标签为新数据的标签. K邻近算法的一般流程: (1)收集数据:可以是本地数据,也可以从网页抓取. (2)准备数…
转自http://blog.csdn.net/c406495762/article/details/75172850 版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[-] 一 简单k-近邻算法 1 k-近邻法简介 2 距离度量 3 Python3代码实现 31 准备数据集 32 k-近邻算法 33 整体代码 二 k-近邻算法实战之约会网站配对效果判定 1 实战背景 2 准备数据数据解析 3 分析数据数据可视化 4 准备数据数据归一化 5 测试算法验证分类器 6 使用算法构建…
文章目录 1.ID3及C4.5算法基础 1.1 计算香农熵 1.2 按照给定特征划分数据集 1.3 选择最优特征 1.4 多数表决实现 2.基于ID3.C4.5生成算法创建决策树 3.使用决策树进行分类 4.存储决策树 通过决策树原理及相关概念细节我们知道,决策树的学习算法主要包括3个步骤:特征选择.决策树生成算法.决策树剪枝,我们按照这个思路来一一实现相关功能. 本文的实现目前主要涉及特征选择.ID3及C4.5算法.剪枝及CART算法暂未涉及,后期补上. 1.ID3及C4.5算法基础 前面文章…
笔者本人是个初入机器学习的小白,主要是想把学习过程中的大概知识和自己的一些经验写下来跟大家分享,也可以加强自己的记忆,有不足的地方还望小伙伴们批评指正,点赞评论走起来~ 文章目录 1.k-近邻算法概述 1.1 距离度量 1.2 k值的选择 1.3 分类决策规则 2.k-近邻算法实现 2.1 实现方法 2.2 k-近邻法python3.6实现 2.2.1 k-近邻法实现程序 2.2.2 classify0(inX, dataSet, labels, k)中部分方法注释 2.2.3 如何测试分类器…
knn算法: 1.优点:精度高.对异常值不敏感.无数据输入假定 2.缺点:计算复杂度高.空间复杂度高. 3.适用数据范围:数值型和标称型. 一般流程: 1.收集数据 2.准备数据 3.分析数据 4.训练算法:不适用 5.测试算法:计算正确率 6.使用算法:需要输入样本和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理. 2.1.1 导入数据 operator是排序时要用的 from numpy import * import operato…
https://blog.csdn.net/c406495762/article/details/75172850…
1.kNN算法的思想:给定一个训练数据集,对新的输入实例,在训练集中找到与该实例最近邻的k个实例,这k个实例的多数属于某类,就把输入实例分为这个类. 2.算法 (1)根据给定的距离度量,在训练集T中找出与实例x最邻近的k个点,涵盖着k个点的邻域记做; (2)在中根据分类决策规则(如多数表决)决定x的类别y: 其中,I为指示函数,即当yi=cj时I为1,否则为0. 距离度量一般是Lp距离或者是Minkowski距离. xi,xj的Lp距离定义为: 这里p≥1,当p=2时,称为欧氏距离:当p=1时,…