制作caffe中的test.txt和val.txt】的更多相关文章

find -name *.jpeg |cut -d '/' -f2-3> train.txt(图片在当前文件夹) find train/dog -name *.JPEG |cut -d '/' -f2-3 >train.txt(假设图片在train/dog文件夹) 如果出错提示:find: 路径必须在表达式之前,则在*.jpg外加双引号即可. find -name ”*.jpg“ |cut -d '/' -f2-3> train.txt  …
简介: 在机器视觉学习过程中,通常会经常批量处理一些图片,在Ubuntu下可以使用find命令,来实现将文件名全部读取出来,生成列表txt文件,作为标签使用 (1)find命令格式如下: find /dir -name "*.jpg" > train.txt #解释: /dir 指定目录 (2)效果: 之后可能会遇到:caffe学习笔记(四)--制作自己的数据集train.txt和val.txt,生成LMDB文件…
http://blog.csdn.net/u011244794/article/details/51565786 标签: caffeimagenet 2016-06-02 12:57 9385人阅读 评论(7) 收藏 举报  分类: 机器学习(1)  版权声明:本文为博主原创文章,未经博主允许不得转载. 因为自己在网络上查到的资料对于一个新手来说虽然指明了方向,但是在细节上没有给出很好的实例,因此我把自己训练的过程记录下来. [实验环境] 物理内存:64G Free:7.5G  CPU个数:3,…
模型融合 有的时候我们手头可能有了若干个已经训练好的模型,这些模型可能是同样的结构,也可能是不同的结构,训练模型的数据可能是同一批,也可能不同.无论是出于要通过ensemble提升性能的目的,还是要设计特殊作用的网络,在用Caffe做工程时,融合都是一个常见的步骤. 比如考虑下面的场景,我们有两个模型,都是基于resnet-101,分别在两拨数据上训练出来的.我们希望把这两个模型的倒数第二层拿出来,接一个fc层然后训练这个fc层进行融合.那么有两个问题需要解决:1)两个模型中的层的名字都是相同的…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5909121.html 参考网址: http://www.cnblogs.com/wangxiaocvpr/p/5096265.html 可以根据caffe-master\examples\imagenet \readme.md进行理解. 1 生成LmDB格式文件 caffe中通过图像生成lmdb格式文件的程序为examples/imagenet/create_imagenet.sh.该文件调用bui…
caffe中大多数层用C++写成. 但是对于自己数据的输入要写对应的输入层,比如你要去图像中的一部分,不能用LMDB,或者你的label 需要特殊的标记. 这时候就需要用python 写一个输入层. 如在fcn 的voc_layers.py 中 有两个类: VOCSegDataLayer SBDDSegDataLayer 分别包含:setup,reshape,forward, backward, load_image, load_label. 不需要backward 没有参数更新. import…
#!/usr/bin/env sh DATA=/home/wp/CAFFE/caffe-master/myself/00b MY=/home/wp/CAFFE/caffe-master/myself/00b echo "Creating train.txt..." rm -rf $MY/train.txt find $DATA/train/banana -name *.jpg| cut -d/ -f9- | sed "s/$/ 0/">>$MY/trai…
caffe默认使用的数据格式为lmdb文件格式,它提供了把图片转为lmdb文件格式的小程序,但是呢,我的数据为一维的数据,我也要分类啊,那我怎么办?肯定有办法可以转为lmdb文件格式的,我也看了一些源代码,好像是把我们的数据变为Datum的格式(这是一个用google protocol buffer搞的一个数据结构类),然后再把它存为lmdb文件.在Datum里面,label为Int类型,要是我们label为符点数,我还怎么用??(不过看到Datum里面有个float_data的东西,怎么用啊,…
关于caffe中的solver: cafffe中的sover的方法都有: Stochastic Gradient Descent (type: "SGD"), AdaDelta (type: "AdaDelta"), Adaptive Gradient (type: "AdaGrad"), Adam (type: "Adam"), Nesterov's Accelerated Gradient (type: "Nes…
第一: 可以选择在将数据转换成lmdb格式时进行打乱: 设置参数--shuffle=1:(表示打乱训练数据) 默认为0,表示忽略,不打乱. 打乱的目的有两个:防止出现过分有规律的数据,导致过拟合或者不收敛. 在caffe中可能会使得,在模型进行测试时,每一个测试样本都输出相同的预测概率值. 或者,直接打乱训练文件的标签文件:train.txt 方法如下: 1)将 train_160309-train.txt按行打乱,每行内容则保持不变,命令: cd 存放文件的路径 awk 'BEGIN{ 100…