BZOJ3239Discrete Logging——BSGS】的更多相关文章

题目大意:给出$P,B,N$,求最小的正整数$L$,使$B^L\equiv N(mod\ P)$. $BSGS$模板题. #include<set> #include<map> #include<queue> #include<stack> #include<cmath> #include<cstdio> #include<vector> #include<bitset> #include<cstring…
3239: Discrete Logging Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 635  Solved: 413[Submit][Status][Discuss] Description Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 2 <= N < P, compute the discrete logar…
[BZOJ3239]Discrete Logging Description Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 2 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that BL== N (mod P) Inpu…
http://poj.org/problem?id=2417 BSGS 大步小步法( baby step giant step ) sqrt( p )的复杂度求出 ( a^x ) % p = b % p中的x https://www.cnblogs.com/mjtcn/p/6879074.html 我的代码中预处理a==b和b==1的部分其实是不必要的,因为w=sqrt(p)(向上取整),大步小步法所找的x包含从0到w^2. #include<iostream> #include<cst…
给a^x == b (mod c)求满足的最小正整数x, 用BSGS求,令m=ceil(sqrt(m)),x=im-j,那么a^(im)=ba^j%p;, 我们先枚举j求出所有的ba^j%p,1<=j<m复杂度O(sqrt(c)),然后枚举1<=i<=m,求出a^(im)在ba^j找满足条件的答案,最后的答案就是第一个满足条件的i*m-j,复杂度O(sqrt(c)) //#pragma comment(linker, "/stack:200000000") //…
3239: Discrete Logging Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 729  Solved: 485[Submit][Status][Discuss] Description Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 2 <= N < P, compute the discrete logar…
POJ 2417 Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4860   Accepted: 2211 Description Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarith…
Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5577   Accepted: 2494 Description Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, b…
我先转为敬? orz% miskcoo 贴板子 BZOJ 3239: Discrete Logging//2480: Spoj3105 Mod(两道题输入不同,我这里只贴了3239的代码) CODE #include<bits/stdc++.h> using namespace std; typedef long long LL; int p, a, b; int gcd(int a, int b) { return b ? gcd(b, a%b) : a; } inline int qpow…
Given a prime P, 2 <= P < 2 31, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that B L == N (mod P) Input Read several lines of input, each…