题意:有一棵树,你要按顺序在树上走$m$次,每次从$u_i$到$v_i$或从$v_i$到$u_i$,走完后,如果一条边被单向经过,那么它贡献$1$的价值,如果一条边被双向经过,那么它贡献$2$的价值,给出所有的$(u_i,v_i)$,你要安排每次走路的方向以最大化价值 设边$i$被经过的次数为$c_i$,容易看出答案的上界是$\sum\min(c_i,2)$,下面我们构造性地说明这个上界总可以被达到 如果$n=1$,树中没有边,接下来考虑$n\gt1$ 任选一个叶子$u$,设$e$为连接它的唯一…