【算法】Attention is all you need】的更多相关文章

Transformer 最近看了Attention Is All You Need这篇经典论文.论文里有很多地方描述都很模糊,后来是看了参考文献里其他人的源码分析文章才算是打通整个流程.记录一下. Transformer整体结构 数据流梳理 符号含义速查 N: batch size T: 一个句子的长度 E: embedding size C: attention_size(num_units) h: 多头header的数量 1. 训练 1.1 输入数据预处理 翻译前文本,翻译后文本,做长度截断…
1. 语言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原理解析 6. 从Encoder-Decoder(Seq2Seq)理解Attention的本质 1. 前言 谷歌在2017年发表了一篇论文名字教Attention Is All You Need,提出了一个只基于attention的结构来处理序列模型相关的问题,比如机器翻译.传统的神经机器翻译大都是利…
AFM:Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks 模型入上图所示,其中sparse iput,embedding layer,pair-wise interaction layer都和FM一样,后面加入了一个attention net生成一个关于特征交叉项的权重,将FM原来的二次项累加变成加权累加.这里的attention net其实…
在这篇文章中,会实现一个BP(backpropagation)算法,并将之应用到手写的阿拉伯数字(0-9)的自动识别上. 训练数据集(training set)如下:一共有5000个训练实例(training instance),每个训练实例是一个400维特征的列向量(20*20 pixel image).用 X 矩阵表示整个训练集,则 X 是一个 5000*400 (5000行 400列)的矩阵 另外,还有一个5000*1的列向量 y ,用来标记训练数据集的结果.比如,第一个训练实例对应的输出…
一.简介 迷宫求解:类似图的DFS.具体的算法思路可以参考书上的50.51页,不过书上只说了粗略的算法,实现起来还是有很多细节需要注意.大多数只是给了个抽象的名字,甚至参数类型,返回值也没说的很清楚,所以很多需要自己揣摩.这也体现了算法和程序设计语言的特点,算法更侧重本质的描述,而任何编程语言都要照顾到实现的细节以及数据类型等语法方面的需求. 表达式求值: 由于数据的读入是按照字符读入的,所以这个简单的小程序只能计算个位数的运算. 二.头文件 迷宫求解: //3_2_maze.h /** aut…
Kosaraju 算法 一.算法简介 在计算科学中,Kosaraju的算法(又称为–Sharir Kosaraju算法)是一个线性时间(linear time)算法找到的有向图的强连通分量.它利用了一个事实,逆图(与各边方向相同的图形反转, transpose graph)有相同的强连通分量的原始图. 有关强连通分量的介绍在之前Tarjan 算法中:Tarjan Algorithm 逆图(Tranpose Graph ): 我们对逆图定义如下: GT=(V, ET),ET={(u, v):(v,…
Deep Attention Recurrent Q-Network 5vision groups  摘要:本文将 DQN 引入了 Attention 机制,使得学习更具有方向性和指导性.(前段时间做一个工作打算就这么干,谁想到,这么快就被这几个孩子给实现了,自愧不如啊( ⊙ o ⊙ ))   引言:我们知道 DQN 是将连续 4帧的视频信息输入到 CNN 当中,那么,这么做虽然取得了不错的效果,但是,仍然只是能记住这 4 帧的信息,之前的就会遗忘.所以就有研究者提出了 Deep Recurre…
时空上下文视觉跟踪(STC)算法的解读与代码复现 zouxy09@qq.com http://blog.csdn.net/zouxy09 本博文主要是关注一篇视觉跟踪的论文.这篇论文是Kaihua Zhang等人今年投稿到一个会议的文章,因为会议还没有出结果,所以作者还没有发布他的Matlab源代码.但为了让我们先睹为快,作者把论文放在arxiv这个网站上面供大家下载了.对于里面所描述的神奇的效果,大家都跃跃欲试,也有人将其复现了.我这里也花了一天的时间去复现了单尺度的C++版本,主要是基于Op…
 Multiple Object Recognition With Visual Attention Google DeepMind  ICRL 2015 本文提出了一种基于 attention 的用于图像中识别多个物体的模型.该模型是利用RL来训练 Deep RNN,以找到输入图像中最相关的区域.尽管在训练的过程中,仅仅给出了类别标签,但是仍然可以学习定位并且识别出多个物体. Deep Recurrent Visual Attention Model 文中先以单个物体的分类为基础,再拓展到多个…
Attention For Fine-Grained Categorization Google ICLR 2015 本文说是将Ba et al. 的基于RNN 的attention model 拓展为受限更少,或者说是非受限的视觉场景.这个工作和前者很大程度上的不同在于,用一个更加有效的视觉网络,并且在attention RNN之外进行视觉网络的预训练. 前人的工作在学习 visual attention model 时已经解决了一些计算机视觉问题,并且表明加上不同的attention mec…