对比一 : 有标签 vs 无标签 有监督机器学习又被称为“有老师的学习”,所谓的老师就是标签.有监督的过程为先通过已知的训练样本(如已知输入和对应的输出)来训练,从而得到一个最优模型,再将这个模型应用在新的数据上,映射为输出结果.再经过这样的过程后,模型就有了预知能力. 而无监督机器学习被称为“没有老师的学习”,无监督相比于有监督,没有训练的过程,而是直接拿数据进行建模分析,意味着这些都是要通过机器学习自行学习探索.这听起来似乎有点不可思议,但是在我们自身认识世界的过程中也会用到无监督学习.比如…
词义消歧,句子.篇章语义理解基础,必须解决.语言都有大量多种含义词汇.词义消歧,可通过机器学习方法解决.词义消歧有监督机器学习分类算法,判断词义所属分类.词义消歧无监督机器学习聚类算法,把词义聚成多类,每一类一种含义. 有监督词义消歧方法.基于互信息词义消歧方法,两种语言对照,基于大量中英文对照语料库训练模型可词义消歧.来源信息论,一个随机变量中包含另一个随机变量信息量(英文信息中包含中文信息信息量),假设两个随机变量X.Y的概率分别是p(x), p(y),联合分布概率是p(x,y),互信息计算…
自动编码器是一种有三层的神经网络:输入层.隐藏层(编码层)和解码层.该网络的目的是重构其输入,使其隐藏层学习到该输入的良好表征. 自动编码器神经网络是一种无监督机器学习算法,其应用了反向传播,可将目标值设置成与输入值相等.自动编码器的训练目标是将输入复制到输出.在内部,它有一个描述用于表征其输入的代码的隐藏层. 自动编码器的目标是学习函数 h(x)≍x.换句话说,它要学习一个近似的恒等函数,使得输出 x^ 近似等于输入 x.自动编码器属于神经网络家族,但它们也和 PCA(主成分分析)紧密相关.…
先说说他们的产品:企业免疫系统(基于异常发现来识别威胁) 可以看到是面向企业内部安全的! 优点整个网络拓扑的三维可视化企业威胁级别的实时全局概述智能地聚类异常泛频谱观测 - 高阶网络拓扑;特定群集,子网和主机事件可搜索的日志和事件重播历史数据设备和外部IP的整体行为的简明摘要专为业务主管和安全分析师设计100%的能见度 企业免疫系统是世界上最先进的网络防御机器学习技术.受到人体免疫系统自我学习智能的启发,这种新技术在复杂和普遍的网络威胁的新时代中,使组织自我保护方式发生了根本转变. 人体免疫系统…
本文仅对常见的无监督学习算法进行了简单讲述,其他的如自动编码器,受限玻尔兹曼机用于无监督学习,神经网络用于无监督学习等未包括.同时虽然整体上分为了聚类和降维两大类,但实际上这两类并非完全正交,很多地方可以相互转化,还有一些变种的算法既有聚类功能又有降维功能,一些新出现的和尚在开发创造中的无监督学习算法正在打破聚类和降维的类别划分.另外因时间原因,可能有个别小错误,如有发现还望指出. 一.聚类(clustering) 1.k-均值聚类(k-means) 这是机器学习领域除了线性回归最简单的算法了.…
使用google翻译自:https://software.seek.intel.com/dealing-with-outliers 数据分析中的一项具有挑战性但非常重要的任务是处理异常值.我们通常将异常值定义为与其余数据群1不一致的样本或事件.异常值通常包含有关影响数据生成过程2的系统和实体的异常特征的有用信息. 异常检测算法的常见应用包括: 入侵检测系统信用卡诈骗有趣的传感器事件医学诊断在本文中,我们将重点介绍异常检测 - 信用卡欺诈的最常见应用之一.通过一些简单的离群值检测方法,可以在真实世…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第12章 - 使用FP-growth算法来高效发现频繁项集. 基本概念 FP-growth算法 FP-growth算法的性能很好,只需要扫描两次数据集,就能生成频繁项集.但不能用于发现关联规则. 我想应该可以使用Apriori算法发现关联规则. FP代表频繁模式(Frequent Pattern). 条件模式基(conditional pattern base). 条件模式基是以所查找元素项为结…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第11章 - 使用Apriori算法进行关联分析. 基本概念 关联分析(association analysis)或者关联规则学习(association rule learning) 这是非监督学习的一个特定的目标:发现数据的关联(association)关系.简单的说,就是那些数据(或者数据特征)会一起出现. 关联分析的目标包括两项:发现频繁项集和发现关联规则.首先需要找到频繁项集,然后才能…
笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评价模型的方式. 常见的应用在监督学习算法中的是计算平均绝对误差(MAE).平均平方差(MSE).标准平均方差(NMSE)和均值等,这些指标计算简单.容易理解:而稍微复杂的情况下,更多地考虑的是一些高大上的指标,信息熵.复杂度和基尼值等等. 本篇可以用于情感挖掘中的监督式算法的模型评估,可以与博客对着看:R语言…
完整代码及其数据,请移步小编的GitHub 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote 奇异值分解(Singular  Value Decomposition,后面简称 SVD)是在线性代数中一种重要的矩阵分解,它不光可用在降维算法中(例如PCA算法)的特征分解,还可以用于推荐系统,以及自然语言处理等领域,在机器学习,信号处理,统计学等领域中有重要应用. 比如之前的学习的PCA,掌握了SVD原理后再去看PC…