<PyTorch深度学习实践>完结合集_哔哩哔哩_bilibili Dataset & Dataloader 1.Dataset & Dataloader作用 ※Dataset-加载数据集,用索引的方式取数 ※DataLoader-Mini-Batch 通过获得DataSet的索引以及数据集大小,来自动得生成小批量训练集 DataLoader先对数据集进行Shuffle,再将数据集按照Batch_Size的长度划分为小的Batch,并按照Iterations进行加载,以方便通过…
文章目录 深度学习-05 模型保存于加载 什么是模型保存与加载 模型保存于加载API 案例1:模型保存/加载 读取数据 文件读取机制 文件读取API 案例2:CSV文件读取 图片文件读取API 案例3:图片文件读取 图像识别 手写体识别 MNIST数据集 任务目标 网络结构 相关API 关键代码 执行结果 案例4:实现手写体识别 服饰识别 数据集介绍 任务目标 网络结构 关键代码 案例5:实现服饰识别 深度学习-05 模型保存于加载 什么是模型保存与加载 模型保存于加载API 案例1:模型保存/…
[译]Vulkan教程(31)加载模型 Loading models 加载模型 Introduction 入门 Your program is now ready to render textured 3D meshes, but the current geometry in the vertices and indices arrays is not very interesting yet. In this chapter we're going to extend the program…
Pytorch 保存模型与加载模型 PyTorch之保存加载模型 参数初始化参 数的初始化其实就是对参数赋值.而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了data,grad等借口,这就意味着我们可以直接对这些参数进行操作赋值了.这就是PyTorch简洁高效所在.所以我们可以进行如下操作进行初始化,当然其实有其他的方法,但是这种方法是PyTorch作者所推崇的: def weight_init(m): # 使用isinstance来判断m属于什么类型 if…
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson7/model_save.py https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson7/model_load.py https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson7/checkpoint_resu…
最近在做试验中遇到了一些深度网络模型加载以及存储的问题,因此整理了一份比较全面的在 PyTorch 框架下有关模型的问题.首先咱们先定义一个网络来进行后续的分析: 1.本文通用的网络模型 import torch import torch.nn as nn ''' 定义网络中第一个网络模块 Net1 ''' class Net1(nn.Module): def __init__(self): super().__init__() # input size [B, 1, 3, 3] ==> [B,…
1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变化后的图片大小,0, 0表示dx和dy, cv2.INTER_LINEAR表示插值的方式为线性插值 2.image.get_shape[1:4].num_elements() 获得最后三个维度的大小之和 参数说明:image表示输入的图片 3. saver.save(sess, path, glob…
转自:知乎 目录: 保存模型与加载模型 冻结一部分参数,训练另一部分参数 采用不同的学习率进行训练 1.保存模型与加载 简单的保存与加载方法: # 保存整个网络 torch.save(net, PATH) # 保存网络中的参数, 速度快,占空间少 torch.save(net.state_dict(),PATH) #-------------------------------------------------- #针对上面一般的保存方法,加载的方法分别是: model_dict=torch.…
TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接下来以自己项目中的代码为例. 项目中模型的代码: class TensorFlowDKT(object): def __init__(self, config, batch_size): # 导入配置好的参数 self.hiddens = hiddens = config.modelConfig.h…
内容:包含tensorflow变量作用域.tensorboard收集.模型保存与加载.自定义命令行参数 1.知识点 """ 1.训练过程: 1.准备好特征和目标值 2.建立模型,随机初始化权重和偏置; 模型的参数必须要使用变量 3.求损失函数,误差为均方误差 4.梯度下降去优化损失过程,指定学习率 2.Tensorflow运算API: 1.矩阵运算:tf.matmul(x,w) 2.平方:tf.square(error) 3.均值:tf.reduce_mean(error)…