转置卷积Transposed Convolution 我们为卷积神经网络引入的层,包括卷积层和池层,通常会减小输入的宽度和高度,或者保持不变.然而,语义分割和生成对抗网络等应用程序需要预测每个像素的值,因此需要增加输入宽度和高度.转置卷积,也称为分步卷积或反卷积,就是为了达到这一目的. from mxnet import np, npx, init from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() 1. Ba…
使用GAN生成图像必不可少的层就是上采样,其中最常用的就是转置卷积(Transposed Convolution).如果把卷积操作转换为矩阵乘法的形式,转置卷积实际上就是将其中的矩阵进行转置,从而产生逆向的效果.所谓效果仅仅在于特征图的形状,也就是说,如果卷积将特征图从形状a映射到形状b,其对应的转置卷积就是从形状b映射回形状a,而其中的值并不一一对应,是不可逆的.另外,不要把逆卷积(Deconvolution)和转置卷积混淆,逆卷积的目标在于构建输入特征图的稀疏编码(Sparse coding…
上一篇介绍了卷积的输出分辨率计算,现在这一篇就来写下转置卷积的分辨率计算.转置卷积(Transposed convolution),转置卷积也有叫反卷积(deconvolution)或者fractionally strided convolutions. 根据<A guide to convolution arithmetic for deep learning>的介绍的话,在进行卷积操作的时候我们是可以把卷积操作重写为以下的形式: 这个时候,输出是可以表示为 如果反向操作,输入为y的话,要得…
网上解释 作者:张萌链接:https://www.zhihu.com/question/43609045/answer/120266511来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 一句话解释:逆卷积相对于卷积在神经网络结构的正向和反向传播中做相反的运算. 逆卷积(Deconvolution)比较容易引起误会,转置卷积(Transposed Convolution)是一个更为合适的叫法. 举个栗子: 4x4的输入,卷积Kernel为3x3, 没有Padding…
目录 写在前面 什么是deconvolution convolution过程 transposed convolution过程 transposed convolution的计算 整除的情况 不整除的情况 总结 参考 博客:blog.shinelee.me | 博客园 | CSDN 写在前面 开篇先上图,图为deconvolution在像素级语义分割中的一种应用,直观感觉deconvolution是一个upsampling的过程,像是convolution的对称过程. 本文将深入deconvol…
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由forrestlin发表于云+社区专栏 导语:转置卷积层(Transpose Convolution Layer)又称反卷积层或分数卷积层,在最近提出的卷积神经网络中越来越常见了,特别是在对抗生成神经网络(GAN)中,生成器网络中上采样部分就出现了转置卷积层,用于恢复减少的维数.那么,转置卷积层和正卷积层的关系和区别是什么呢,转置卷积层实现过程又是什么样的呢,笔者根据最近的预研项目总结出本文. 1. 卷积层和全连接层 在CNN提出…
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三) 在上一篇博客中,我们简单介绍了基于循环图神经网络的两种重要模型,在本篇中,我们将着大量笔墨介绍图卷积神经网络中的卷积操作.接下来,我们将首先介绍一下图卷积神经网络的大概框架…
上采样(upsampling)一般包括2种方式: Resize,如双线性插值直接缩放,类似于图像缩放,概念可见最邻近插值算法和双线性插值算法——图像缩放 Deconvolution,也叫Transposed Convolution,可见逆卷积的详细解释ConvTranspose2d(fractionally-strided convolutions) 第二种方法如何用pytorch实现可见上面的链接 这里想要介绍的是如何使用pytorch实现第一种方法: 有两个模块都支持该上采样的实现,一个是t…
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三) 笔者最近看了一些图与图卷积神经网络的论文,深感其强大,但一些Survey或教程默认了读者对图神经网络背景知识的了解,对未学过信号处理的读者不太友好.同时,很多教程只讲是什么…
1. 卷积(convolution) 输出 y(n) 是作为在 x(k) 和 h(n−k)(反转和移位)重叠之下的样本和求出的. 考虑下面两个序列: x(n)=[3,11,7,0,−1,4,2],−3≤n≤3 h(n)=[2,3,0,−5,2,1],−1≤n≤4 求卷积 y(n)=x(n)⋆h(n) matlab 实现: 如果是任意无限长序列,不可以直接用 matlab 来计算卷积,matlab 内部实现了一个函数 conv 来计算两个有限长序列之间的卷积.conv 函数规定这两个序列都在 n=…