Problem   UVALive - 5135 - Mining Your Own Business Time Limit: 5000 mSec Problem Description John Digger is the owner of a large illudium phosdex mine. The mine is made up of a series of tunnels that meet at various large junctions. Unlike some owne…
题意:n条隧道由一些点连接而成,其中每条隧道链接两个连接点.任意两个连接点之间最多只有一条隧道.任务就是在这些连接点中,安装尽量少的太平井和逃生装置,使得不管哪个连接点倒塌,工人都能从其他太平井逃脱,求最少安装数量和方案. 思路:其实本题就相当于在一张无向图中,涂尽量少的黑点,使得任意删除哪个点,每个连通分量至少有一个黑点.因为不同的连通分量最多只有一个公共点,那一定是割点.可以发现,涂黑割点是不划算的,而且在 一个点-双连通分量中涂黑两个黑点也是不划算的.所以只有当点-双连通分量只有一个割点时…
刘汝佳白书上面的一道题目:题意是给定一个联通分量,求出割顶以及双连通分量的个数,并且要求出安放安全井的种类数,也就是每个双连通分量中结点数(除开 割顶)个数相乘,对于有2个及以上割顶的双连通分量可以不用安放安全井.如果整个图就是一个双连通分量,那么需要安放两个安全井,种类数是n*(n-1)/2. 代码来自刘汝佳白书: #include <iostream> #include <sstream> #include <cstdio> #include <climits…
据说这是一道Word Final的题,Orz... 原题链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3136 题意: 给你一个联通图,让你选择一些点,使得这个图的任意一个点消失后,其余的点都能到达某个你选择的点.问你最少选择哪些点,并且输出在最优的情况下,有多少方案. 题解: 一眼看过去,做法很简单,就删掉所有的割点…
为什么写这道题还是因为昨天多校的第二题,是道图论,HDU 4612. 当时拿到题目的时候就知道是道模版题,但是苦于图论太弱.模版都太水,居然找不到. 虽然比赛的时候最后水过了,但是那个模版看的还是一知半解,主要还是对于无向图缩点不了解. 所以今天特意找了道求无向图边双连通分量,然后缩点的题学习一下,这道题的缩点和昨天那道差不多,唯一的区别就是这是无重边的,那题是有重边的. 先搞掉这个,下午把有重边的缩点搞一下. 这里给出一些概念.具体可以到神牛博客看一下. 边连通度:使一个子图不连通的需要删除掉…
  [问题描述] 给定一个无向图,设计一个算法,判断该图中是否存在关节点,并划分双连通分量. package org.xiu68.exp.exp9; import java.util.Stack; public class Exp9_3 { //无向图的双连通分量问题 public static void main(String[] args) { // TODO Auto-generated method stub int[][] graph=new int[][]{ {0,1,1,0,0},…
#include<cstdio> #include<cstring> #include<cmath> #include<cstdlib> #include<iostream> #include<algorithm> #include<vector> #include<map> #include<queue> #include<stack> #include<string> #…
这篇介绍如何用Tarjan算法求Double Connected Component,即双连通分量. 双联通分量包括点双连通分量v-DCC和边连通分量e-DCC. 若一张无向连通图不存在割点,则称它为“点双连通图”,不存在桥则称为“边双连通图”. 无向图的极大点双连通子图就v-DCC,极大边双连通子图就是e-DCC. 上一篇我们讲了如何用Tarjan算法求出无向图中的所有割点和桥. 不会求的朋友们可以去看一看上篇文章:Tarjan算法求无向图的割点和桥 这里“极大”的定义可以理解为包含部分点的最…
题目链接 题意:n条隧道由一些点连接而成,其中每条隧道链接两个连接点.任意两个连接点之间最多只有一条隧道.任务就是在这些连接点中,安装尽量少的太平井和逃生装置,使得不管哪个连接点倒塌,工人都能从其他太平井逃脱,求最少安装数量和方案. 分析:本题相当于在一张无向图上选择尽量少的点涂黑(对应太平井),使任意一个点被删除后,每个连通分量都至少还有一个黑点.不同的连通分量最多有一个公共点即割点,将割点涂上是不划算的,因为删除割点后,要保证每个连通分量还要有黑点,所以还要在其他的连通分量中涂黑点,如果不涂…
题目分析:在一张无向图中,将一些点涂上黑色,使得删掉图中任何一个点时,每个连通分量至少有一个黑点.问最少能涂几个黑点,并且在涂最少的情况下有几种方案. 题目分析:显然,一定不能涂割点.对于每一个连通分量,如果有1个割点,则必须涂上分量内除割点之外的任意一个点,如果有多个(2个及以上)割点,则这个分量不需要涂色.如果整张图都没有割点,那么任选两个点涂色即可,之所以要涂两个,是要防止删掉的电恰是黑点的情况. 代码如下: # include<iostream> # include<cstdio…
求出 bcc 后再……根据大白书上的思路即可. 然后我用的是自定义的 stack 类模板: #include<cstdio> #include<cstring> #include<vector> //#include<stack> #include<stdexcept> #include<algorithm> using namespace std; typedef long long LL; ; template <typen…
LINK1 LINK2 题目大意 给你一个无向连通图,让你给一些点染上黑色,需要满足染色之后,断开任意一个节点,要满足任意一个联通块中剩下的节点中至少有一个黑点 思路 一开始想的是把每一个点双联通分量都把除了割点的size乘上 然后发现随手卡掉 然后发现一下性质 首先所有相邻点双联通分量一定有公共的割点 如果一个双联通分量里面只包含了一个割点,那么如果断掉这个割点那么这个双联通分量就被孤立了 所以这样的双联通分量至少选择一个点 然后如果一个双联通分量有大于等于两个割点,就算一个被割掉了另外一边至…
[算法]点双连通分量 [题解]详见<算法竞赛入门竞赛入门经典训练指南>P318-319 细节在代码中用important标注. #include<cstdio> #include<algorithm> #include<vector> #include<stack> #include<cstring> using namespace std; ; ]; int first[maxm],iscut[maxm],dfn[maxm],low…
由于互相憎恨的骑士不能相邻,把可以相邻的骑士连上无向边,会议要求是奇数,问题就是求不在任意一个简单奇圈上的结点个数. 如果不是二分图,一定存在一个奇圈,同一个双连通分量中其它点一定可以加入奇圈.很明显,其它点和已知的奇圈相连总是有两条点数一奇一偶的路径, 因此一定可以找到一条回路使得新的这个点加入一个奇圈. #include<bits/stdc++.h> using namespace std; #define bug(x) cout<<#x<<'='<<x…
/* 题意:给出一个无向图,去掉一条权值最小边,使这个无向图不再连同! tm太坑了... 1,如果这个无向图开始就是一个非连通图,直接输出0 2,重边(两个节点存在多条边, 权值不一样) 3,如果找到了桥的最小权值为0,也就是桥上的士兵数为0,那么还是要最少派一个 士兵过去炸掉桥! 思路:假设每两个节点最多只有一条边进行相连! 进行tarjan算法,如果该算法调用了超过2次,说明这个原图就是不连通的! 否则在tarjan算法中将桥存起来!然后我们遍历每一座桥,看一看我们找到的 桥(连接的两个定点…
http://poj.org/problem?id=3352 题意:给出一个有n个顶点m条边的无向连通图,问至少添加几条边,使删除任意一条边原图仍连通. 思路:一个边双连通图删除任意一条边仍为连通图.故此题即为求原图添加几条边能成为边双连通图.先对无向图中的强连通分量进行缩点,所有的缩点就能构成一棵树,节点之间的连线即为桥.只需将树中的叶子节点相连,就能构成一个边双连通图.叶子节点即为度为1的连通分量.low[i]值相同的点在同一个连通分量中.所加边数=(叶子数+1)/2; #include <…
layout: post title: 训练指南 UVALive - 5135 (双连通分量) author: "luowentaoaa" catalog: true mathjax: true tags: - 双连通分量 - 图论 - 训练指南 Mining Your Own Business UVALive - 5135 题意 在一张无向图中,将一些点涂上黑色,使得删掉图中任何一个点时,每个连通分量至少有一个黑点.问最少能涂几个黑点,并且在涂最少的情况下有几种方案. 显然,一定不能…
点击打开链接 无向图的双连通分量 #include<cstdio> #include<stack> #include<vector> #include<map> #include<algorithm> #include<cstring> #pragma comment(linker, "/STACK:102400000,102400000") using namespace std; typedef long lo…
无向图的双连通分量 定义:若一张无向连通图不存在割点,则称它为"点双连通图".若一张无向连通图不存在割边,则称它为"边双连通图". 无向图图的极大点双连通子图被称为"点双连通分量",记为"\(v-DCC\)".无向图图的极大边双连通子图被称为"边双连通分量",记为"\(e-DCC\)". 没错,万能的图论连通性算法\(Tarjan\)又来了. 预备知识 时间戳 图在深度优先遍历的过程中,…
一.dfs框架: vector<int>G[maxn]; //存图 int vis[maxn]; //节点访问标记 void dfs(int u) { vis[u] = ; PREVISIT(u); //访问节点u之前的操作 int d = G[u].size(); ; i < d; i++)//枚举每条边 { int v = G[u][i]; if(!vis[v])dfs(v); } POSTVISIT(u); //访问节点u之后的操作 } 二.无向图连通分量 void find_cc…
嗯,首先边双连通分量(双连通分量之一)是:在一个无向图中,去掉任意的一条边都不会改变此图的连通性,即不存在桥(连通两个边双连通分量的边),称作边双连通分量.一个无向图的每一个极大边双连通子图称作此无向图的双连通分量. 对于边连通分量,我们需要先找出所有的桥,即为所有的桥做上标记. 首先要用dfs的性质来快速找出一个连通图中的所有的桥. 时间戳:表示在进行dfs的时候,每个节点被访问的先后顺序.每个节点会被标记两次,分别用 pre[],和post[]来表示. 在无向图中,只存在两种边,一种是树边(…
题解 SP16185 Mining your own business 原题传送门 题意 给你一个无向图,求至少安装多少个太平井,才能使不管那个点封闭,其他点都可以与有太平井的点联通. 题解 其他题解里都说要用"点双连通分量",其实不用. 我们先用tarjan求出所有割点,然后我们假设所有的割点都坍塌掉了,整张图就被我们分成了许多联通块,我们可以用暴搜找出所有联通块.每个联通块与割点有如下关系(s表示一个联通块的点的数量): 这个联通块与0个割点直接连接:说明这个联通块与其他联通块不相…
HDU3844 Mining Your Own Business 问题描述John Digger是一个大型illudium phosdex矿的所有者.该矿山由一系列隧道组成,这些隧道在各个大型交叉口相遇.与一些业主不同,Digger实际上关心他的工人的福利,并担心矿山的布局.具体来说,他担心可能会出现一个交汇处,如果发生倒塌,会将矿井的一个区域的工人与其他工人隔离开来(如你所知,illudium phosdex非常不稳定).为了解决这个问题,他希望从交叉点到地面安装特殊的逃生轴.他可以在每个交叉…
2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1147  Solved: 528[Submit][Status][Discuss] Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤点设立救援出口,使得无论哪一个挖煤点坍塌之后,其他挖煤点的工人都有一条道路通向救援出口.请写一个程序,用…
点击打开链接 无向图点双联通.二分图判定 <span style="font-size:18px;">#include <cstdio> #include <stack> #include <vector> #include <algorithm> #include <cstring> using namespace std; struct Edge{ int u, v; }; const int maxn = 1…
https://vjudge.net/problem/UVALive-5135 题意:在一个无向图上选择尽量少的点涂黑,使得任意删除一个点后,每个连通分量至少有一个黑点. 思路: 首先dfs遍历求出割顶和双连通分量,并把每个连通分量保存下来. 接下来分情况讨论: 如果一个点—双连通分量只有一个割顶,在该分量中必须将一个非割顶涂黑. 如果一个点—双连通分量有2个及以上的割顶,不需要涂黑. 如果整个图没有割顶,则至少需要涂黑两个点.(因为有可能删除的就是涂黑的点) #include<iostream…
基本概念 给定无向连通图G = (V, E)割点:对于x∈V,从图中删去节点x以及所有与x关联的边之后,G分裂为两个或两个以上不相连的子图,则称x为割点割边(桥)若对于e∈E,从图中删去边e之后,G分裂成两个不相连的子图,则称e为G的桥或割边 时间戳在图的深度优先遍历过程中,按照每个节点第一次被访问的时间顺序,依次给予N个节点1~N的整数标记,该标记被称为“时间戳”,记为dfn[x] 搜索树在无向连通图中任选一个节点出发进行深度优先遍历吗,每个节点只访问一次.所有发生递归的边(x, y)构成一棵…
// tarjan算法求无向图的桥.边双连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<vector> using namespace std; ; ], Next[SIZE * ]; int dfn[SIZE], low[SIZE], c[SIZE]; int n, m, tot, num, dcc, tc; ]…
不是标题党,之前我也写过一篇比较全的,但是对于初学者不友好.传送门? 双连通分量(Biconnected component):     1.边双联通 E-BCC     2.点双连通 V-BCC 双连通分量分为点双连通(V-BCC)和边双连通(E-BCC),这是图论学习中一个很重要的知识点,也是图的变形转化的一个主要方法.通过V-BCC缩点可以求割边(桥),也可以通过E-BCC缩点求割点.这是我们今天讲的主要的内容. 1.边双连通分量 先说不好理解的定义:若一个无向图的点两两间都有两条不重合的…
these days I‘m tired!,but very happy... #include<cstdio> #include<cstring> #include<stack> #include<vector> #include<algorithm> using namespace std; typedef long long lld; <<; struct Edge { int u,v; }; vector <int>…