【网络结构】VGG-Net论文解析】的更多相关文章

目录 0. 论文链接 1. 概述 2. 网络结构 2.1 卷积核 2.2 池化核 2.3 全连接层 3. 训练 4. 测试 5. 其他 6.参考链接 @ 0. 论文链接 论文链接 1. 概述   VGG提出了相对AlexNet更深的网络模型,并且通过实验发现网络越深性能越好(在一定范围内).在网络中,使用了更小的卷积核(3x3),stride为1,同时不单单的使用卷积层,而是组合成了"卷积组",即一个卷积组包括2-4个3x3卷积层(a stack of 3x3 conv),有的层也有1…
摄像头定位:ICCV2019论文解析 SANet: Scene Agnostic Network for Camera Localization 论文链接: http://openaccess.thecvf.com/content_ICCV_2019/papers/Yang_SANet_Scene_Agnostic_Network_for_Camera_Localization_ICCV_2019_paper.pdf The code is available at: https://githu…
前言 最近有一个idea需要去验证,比较忙,看完Mask R-CNN论文了,最近会去研究Mask R-CNN的代码,论文解析转载网上的两篇博客 技术挖掘者 remanented 文章1 论文题目:Mask R-CNN 论文链接:论文链接 论文代码:Facebook代码链接:Tensorflow版本代码链接:] to compute the exact values of the input features at four regularly sampled locations in each…
目标形体形状轮廓重建:ICCV2019论文解析 Shape Reconstruction using Differentiable Projections and Deep Priors 论文链接: http://openaccess.thecvf.com/content_ICCV_2019/papers/Gadelha_Shape_Reconstruction_Using_Differentiable_Projections_and_Deep_Priors_ICCV_2019_paper.pd…
结构感知图像修复:ICCV2019论文解析 StructureFlow: Image Inpainting via Structure-aware Appearance Flow 论文链接: http://openaccess.thecvf.com/content_ICCV_2019/papers/Ren_StructureFlow_Image_Inpainting_via_Structure-Aware_Appearance_Flow_ICCV_2019_paper.pdf Source co…
对抗性鲁棒性与模型压缩:ICCV2019论文解析 Adversarial Robustness vs. Model Compression, or Both? 论文链接: http://openaccess.thecvf.com/content_ICCV_2019/papers/Ye_Adversarial_Robustness_vs._Model_Compression_or_Both_ICCV_2019_paper.pdf Code is available at https://githu…
白*衡(Color Constancy,无监督AWB):CVPR2019论文解析 Quasi-Unsupervised Color Constancy 论文链接: http://openaccess.thecvf.com/content_CVPR_2019/papers/Bianco_Quasi-Unsupervised_Color_Constancy_CVPR_2019_paper.pdf 摘要 本文提出了一种计算颜色恒常性的方法,即训练一个深卷积神经网络来检测彩色图像中转换成灰度后的消色差像…
将视频插入视频:CVPR2019论文解析 Inserting Videos into Videos 论文链接: http://openaccess.thecvf.com/content_CVPR_2019/papers/Lee_Inserting_Videos_Into_Videos_CVPR_2019_paper.pdf 摘要 在本文中,本文引入了一个新的问题,即通过插入其他视频来操作给定的视频.本文的主要任务是,给定一个对象视频和一个场景视频,在场景视频中用户指定的位置插入对象视频,以使生成…
LTMU 第零部分:前景提要 一般来说,单目标跟踪任务可以从以下三个角度解读: A matching/correspondence problem.把其视为前后两帧物体匹配的任务(而不考虑在跟踪过程中物体外观的改变,也就是不会因为物体外观更改而更改模型). An appearance learning problem.外观学习的任务(需要在测试时fine-tune网络).例如MDNet A prediction problem.一个目标检测的任务,例如:ROLO = CNN + LSTM.就是使…
CVPR2020论文解析:实例分割算法 BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation 论文链接:https://arxiv.org/pdf/2001.00309.pdf 摘要 实例分割是基本的视觉任务之一.近年来,全卷积实例分割方法因其比Mask R-CNN等两阶段方法简单.高效而备受关注.迄今为止,当模型具有相似的计算复杂度时,几乎所有这些方法在掩模精度上都落后于两级掩模R-CNN方法,留下了很大的改进空间.在这项工…