雅克比(Jacobi)方法】的更多相关文章

可以用来求解协方差矩阵的特征值和特征向量. 雅可比方法(Jacobian method)求全积分的一种方法,把拉格朗阶查皮特方法推广到求n个自变量一阶非线性方程的全积分的方法称为雅可比方法. 雅克比迭代法的计算公式简单,每迭代一次只需计算一次矩阵和向量的乘法,且计算过程中原始矩阵A始终不变,比较容易并行计算. 考虑线性方程组Ax=b时,一般当A为低阶稠密矩阵时,用主元消去法解此方程组是有效方法.但是,对于由工程技术中产生的大型稀疏矩阵方程组(A的阶数很高,但零元素较多,例如求某些偏微分方程数值解…
矩阵的特征值和特征向量是线性代数以及矩阵论中很重要的一个概念.在遥感领域也是经经常使用到.比方多光谱以及高光谱图像的主成分分析要求解波段间协方差矩阵或者相关系数矩阵的特征值和特征向量. 依据普通线性代数中的概念,特征值和特征向量能够用传统的方法求得,可是实际项目中一般都是用数值分析的方法来计算,这里介绍一下雅可比迭代法求解特征值和特征向量. 雅克比方法用于求实对称阵的所有特征值.特征向量. 对于实对称阵 A,必有正交阵 U.使 U TA U = D. 当中 D 是对角阵,其主对角线元 li 是…
原文链接 多重网格方法是解微分方程的方法.这个方法的好处是在利用迭代法收敛结果的时候速度特别快.并且,不管是否对称,是否线性都无所谓.它的值要思想是在粗糙结果和精细结果之间插值. 前面介绍了Gauss–Seidel方法和Jacobi 方法,现在再用这两个方法来举例.尽管Gauss–Seidel (GS)方法converge更快一些,但其实对于维度很高的系统都很慢.Multigrid(MG)方法的思路是先把问题粗糙化,把原网格投影到一个比较简单的新网格上计算,等到快速收敛以后再经由Interpol…
我个人对基于物理的动画很感兴趣,最近在尝试阅读<Fluid Engine Development>,由于内容涉及太多的数学问题,而单纯学习数学又过于枯燥,难以坚持学习(我中途放弃好多次了),打算尝试通过编写博客总结知识的学习方法来学习. 在计算数值问题时,我们经常遇到线性方程,比如基于网格的流体模拟在求解扩散和压强,需要求解线性方程组. 线性方程组 线性方程组 \(\left\{ \begin{matrix} 2 * x - y =3 \\ -x + 2 * y = 6 \end{matrix…
1 理论基础 学习Eigen人脸识别算法需要了解一下它用到的几个理论基础,现总结如下: 1.1 协方差矩阵 首先需要了解一下公式: 共公式可以看出:均值描述的是样本集合的平均值,而标准差描述的则是样本集合的各个样本点到均值的距离之平均.以一个国家国民收入为例,均值反映了平均收入,而均方差/方差则反映了贫富差距,如果两个国家国民收入均值相等,则标准差越大说明国家的国民收入越不均衡,贫富差距较大.以上公式都是用来描述一维数据量的,把方差公式推广到二维,则可得到协方差公式: 协方差表明了两个随机变量之…
OpenCascade Eigenvalues and Eigenvectors of Square Matrix eryar@163.com Abstract. OpenCascade use the Jacobi method to find the eigenvalues and the eigenvectors of a real symmetric square matrix. Use class math_Jacobi to computes all eigenvalues and…
近年来,金融领域的量化分析越来越受到理论界与实务界的重视,量化分析的技术也取得了较大的进展,成为备受关注的一个热点领域.所谓金融量化,就是将金融分析理论与计算机编程技术相结合,更为有效的利用现代计算技术实现准确的金融资产定价以及交易机会的发现.量化分析目前已经涉及到金融领域的方方面面,包括基础和衍生金融资产定价.风险管理.量化投资等.随着大数据技术的发展,量化分析还逐步与大数据结合在一起,对海量金融数据实现有效和快速的运算与处理. 在量化金融的时代,选用一种合适的编程语言对于金融模型的实现是至关…
转载:https://blog.csdn.net/wangxiaojun911/article/details/6890282 Gauss–Seidelmethod 对应于形如Ax = b的方程(A为对称正定矩阵或者Diagonally dominant),可求解如下: Jacobi method 另一种方法是Jacobimethod,它与Gauss–Seidelmethod类相似,但是要求A必须是Diagonally dominant.把A分解成D+U+L,仅求D的逆矩阵. Dx = b –…
如果矩阵对某一个向量或某些向量只发生伸缩变换,不对这些向量产生旋转的效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值.这里可以将特征值为负,特征向量旋转180度,也可看成方向不变,伸缩比为负值.所以特征向量也叫线性不变量 PCA的物理意义: 各种不同的信号(向量)进入这个系统中后,系统输出的信号(向量)就会发生相位滞后.放大.缩小等各种纷乱的变化.但只有特征信号(特征向量)被稳定的发生放大(或缩小)的变化.如果把系统的输出端口接入输入端口,那么只有特征信号(特征向量)第二次被放大…
SVO详细解读 极品巧克力 前言 接上一篇文章<深度滤波器详细解读>. SVO(Semi-Direct Monocular Visual Odometry)是苏黎世大学Scaramuzza教授的实验室,在2014年发表的一种视觉里程计算法,它的名称是半直接法视觉里程计,通俗点说,就是结合了特征点法和直接法的视觉里程计.目前该算法已经在github上面开源(https://github.com/uzh-rpg/rpg_svo).贺一家在它的开源版本上面进行改进,形成了SVO_Edgelet(ht…