pandas.DataFrame对象解析】的更多相关文章

pandas.DataFrame对象类型解析 df = pd.DataFrame([[1,"2",3,4],[5,"6",7,8]],columns=["a","b","c","d"]) method解析 1.add()方法:类似加法运算(相加的元素必须是同一对象的数据) | add(self, other, axis='columns', level=None, fill_value=…
import pandas as pd >>> df = pd.DataFrame({'a':[1,3,5,7,4,5,6,4,7,8,9], 'b':[3,5,6,2,4,6,7,8,7,8,9]}) >>> df['a'].values.tolist() [1, 3, 5, 7, 4, 5, 6, 4, 7, 8, 9] or you can just use >>> df['a'].tolist() [1, 3, 5, 7, 4, 5, 6, 4…
Pandas有两大数据结构:Series和DataFrame,之前已对Series对象进行了介绍(链接),本文主要对DataFrame对象的常用用法进行总结梳理. 约定: import pandas as pd 1.什么是DataFrame对象? 一个二维表,有行索引(index)和列索引(columns),列的数据类型可以不同. 2.DataFrame对象的创建 DataFrame对象的创建主要是使用pd.DataFrame方法.主要包括以下三种: (1)方法1:通过等长列表组成的字典创建 d…
Dataframe对象生成Excel文件 需要xlrd库  命令  pip install xlrd #导入pandas import pandas as pd import numpy as np #导入SqlAlchemy from sqlalchemy import create_engine if __name__ == "__main__": #建立数据库引擎 engine = create_engine('mysql+pymysql://root:mysql@localho…
当使用pd.read_csv()方法读取csv格式文件的时候,常常会因为csv文件中带有中文字符而产生字符编码错误,造成读取文件错误,在这个时候,我们可以尝试将pd.read_csv()函数的encoding参数设置为"gbk"或者"utf-8".(这个方法在上一篇博客有介绍) 据我个人经验总结(如果有错误,还希望大神斧正),在含有中文编码的情况下,to_csv()方法的encoding参数默认为"gbk",而read_csv()方法的encod…
定义: DataFrame是二维的.大小可变的.成分混合的.具有标签化坐标轴(行和列)的表数据结构.基于行和列标签进行计算.可以被看作是为序列对象(Series)提供的类似字典的一个容器,是pandas中主要的数据结构. 形式: class pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False) 参数含义: data : numpy ndarray(多维数组)(结构化或同质化的), dict(字典…
之前已经写过pandas DataFrame applymap()函数 还有pandas数组(pandas Series)-(5)apply方法自定义函数 pandas DataFrame 的 applymap() 函数和pandas Series 的 apply() 方法,都是对整个对象上个各个值进行单独处理,返回一个新的对象. 而pandas DataFrame 的  apply() 函数,虽然也是作用于DataFrame的每个值,但是接受的参数不是各个值本身,而是DataFrame里各行(…
DataFrame定义: DataFrame是pandas的两个主要数据结构之一,另一个是Series —一个表格型的数据结构 —含有一组有序的列 —大致可看成共享同一个index的Series集合 DataFrame创建方式: 默认方式创建: >>> data = {'name':['Wangdachui','Linling','Niuyun'],'pay':[4000,5000,6000]} >>> frame = pd.DataFrame(data) >&g…
Ref: Pandas Tutorial: DataFrames in Python Ref: pandas.DataFrame Ref: Pandas:DataFrame对象的基础操作 Ref: Creating, reading, and writing reference pandas.DataFrame() pandas.Series() pandas.read_csv() pandas.DataFrame.shape pandas.DataFrame.head pandas.read_…
相信有很多人收这个问题的困扰,如果你想一次性在pandas.DataFrame里添加几列,或者在指定的位置添加一列,都会很苦恼找不到简便的方法:可以用到的函数有df.reindex, pd.concat 我们来看一个例子: df 是一个DataFrame, 如果你只想在df的后面添加一列,可以用下面的方法: 但是如果你想一次性添加两列级以上,你可能会用通样的办法 df[['D','E']] == None ,结果报错如下: 所以接下来我想介绍两种认为比较简便的方法 (1)第一个方法是利用pd.c…