Matlab 模拟退火算法模型代码】的更多相关文章

function [best_solution,best_fit,iter] = mySa(solution,a,t0,tf,Markov) % 模拟退化算法 % ===== 输入 ======% % solution 初始解 % a 温度衰减系数 0.99 % t0 初始温度 120 % tf 最终温度 1 % Markov 马尔科夫链长度 10000 % ====== 输出 =====% % best_solution 最优解 % best_fit 最优解目标值 % iter 迭代次数 n…
非线性规划问题的基本内容 非线性规划解决的是自变量在一定的非线性约束或线性约束组合条件下,使得非线性目标函数求得最大值或者最小值的问题. 当目标函数为最小值时,上述问题可以写成如下形式: \[ \min z={F(x)} \] \[ \text { s.t. } \left\{\begin{array}{l} {\mathbf{A}\mathbf{X} \leqslant \mathbf{B}} \\ {\mathbf{A}_{\mathrm{eq}} \mathbf{X}=\mathbf{B}…
线性规划问题的基本内容 线性规划解决的是自变量在一定的线性约束条件下,使得线性目标函数求得最大值或者最小值的问题. \[ \min z=\sum_{j=1}^{n} f_{j} x_{j} \] \[ \text { s.t. }\left\{\begin{array}{ll}{\sum_{j=1}^{n} a_{i j} x_{j} \leqslant b_{i}} & {(i=1,2, \cdots, m)} \\ {\sum_{j=1}^{n} a_{k j}^{\mathrm{eq}}…
最短路问题的基本内容 最短路问题研究的是,在一个点与点之间连接形成的网络图中,对应路径赋予一定的权重(可以理解为两点之间的距离),计算任意两点之间如何和走,路径最短的问题.在这里的距离可以理解成各种两点之间某种任务的开销. 网络图 模型调用 解决最短路问题,一般可采取 dijkstra 或者floyd 这两种模型,模型调用形式如下: [mydist,mypath]=mydijkstra(a,sb,db) % dijkstra模型 [mydist,mypath]=myfloyd(a,sb,db)…
问题描述: 我方有一个基地,经度和纬度为( 70,40).假设我方飞机的速度为 1000 公里/小时. 我方派一架飞机从基地出发,侦察完敌方所有目标,再返回原来的基地.在敌方每一目 标点的侦察时间不计,求该架飞机所花费的时间(假设我方飞机巡航时间可以充分长). 这是一个旅行商问题.我们依次给基地编号为 1,敌方目标依次编号为 2, 3,…, 101, 最后我方基地再重复编号为 102(这样便于程序中计算). 距离矩阵 D = ( dij )102×102 , 其中 dij 表示表示 i, j 两…
模拟退火算法SA原理及python.java.php.c++语言代码实现TSP旅行商问题,智能优化算法,随机寻优算法,全局最短路径 模拟退火算法(Simulated Annealing,SA)最早的思想是由N. Metropolis等人于1953年提出.1983 年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域.来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温…
整数线性规划问题的基本内容 整数线性规划解决的是自变量在一定的线性约束条件下,使得线性目标函数求得最大值或者最小值的问题.其中自变量只能取整数.特别地,当自变量只能取0或者1时,称之为 0-1 整数规划问题. 当目标函数为最小值时,上述问题可以写成如下形式: \[ \min z=\mathbf{F}^{T}\mathbf{X} \] \[ \text { s.t. } \left\{\begin{array}{l} {\mathbf{A}\mathbf{X} \leqslant \mathbf{…
指派问题的基本内容 一般来说指派问题解决的是如何将任务分配到人,使得任务完成的效益最大化(成本型效益则求最小值,利润型效益则求最大值).上述问题一个 0 - 1 整数规划问题. 问题围绕着任务和人展开,即存在着 m 个任务,以及 n 个人.每个人处理每个任务都会有对应的效益,将所有人的情况写在一起,就组成了一个 m*n 的效益矩阵. 当 m = n 时,即此时,任务数和人数相等,那么每个人都会处理一项任务,存在如下约束: 对于任务来说,每个任务必须分配一个人: 对于人来说,每个人必须分配一个任务…
这篇文章是之前写的智能算法(遗传算法(GA).粒子群算法(PSO))的补充.其实代码我老早之前就写完了,今天恰好重新翻到了,就拿出来给大家分享一下,也当是回顾与总结了. 首先介绍一下模拟退火算法(SA).模拟退火算法(simulated annealing,SA)算法最早是由Metropolis等人提出的.其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性.模拟退火算法是一种通用的优化算法,其物理退火过程由以下三部分组成: (1)加温过程 (2)等温过程 (3)冷却过程 其中加…
Python实现各种排序算法的代码示例总结 作者:Donald Knuth 字体:[增加 减小] 类型:转载 时间:2015-12-11我要评论 这篇文章主要介绍了Python实现各种排序算法的代码示例总结,其实Python是非常好的算法入门学习时的配套高级语言,需要的朋友可以参考下 在Python实践中,我们往往遇到排序问题,比如在对搜索结果打分的排序(没有排序就没有Google等搜索引擎的存在),当然,这样的例子数不胜数.<数据结构>也会花大量篇幅讲解排序.之前一段时间,由于需要,我复习了…