打印斐波那契(Fibonacci)数列】的更多相关文章

题目:斐波那契数列,又称黄金分割数列(F(n+1)/F(n)的极限是1:1.618,即黄金分割率),指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.…….在数学上,斐波纳契数列以如下被以递归的方法定义: F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*) 递归实现——自上而下 在很多C语言教科书中讲到递归函数的时候,都会用Fibonacci作为例子.因此很多程序员对这道题的递归解法非常熟悉,看到题目就能写出如下递归求解的代码: long Fib…
废话不多说,直接上代码 #include "stdio.h" #include "queue" #include "math.h" using namespace std; /////////////////////////////////////////////////////////////////////////// //一:递归实现 // 使用公式f[n]=f[n-1]+f[n-2],依次递归计算,递归结束条件是f[1]=1,f[2]=1…
a,b = 0, 1 while b<100: print (b), a, b = b, a+b…
尾递归会将本次方法的结果计算出来,直接传递给下个方法.效率很快. 一般的递归,在本次方法结果还没出来的时候,就调用了下次的递归, 而程序就要将部分的结果保存在内存中,直到后面的方法结束,再返回来计算.如果递归比较大,可能会照成内存溢出. 实践证明,尾递归 ,确实比普通递归效率高. 下面的例子 ,用 普通递归需要10s完成 , 而用尾递归,只用了1s不到 package com.zf.dg; /** * 题目 * 有一种母牛,出生后第三年,开始生育,每年都生一头 母牛(貌似单性生育,这里就没公牛什…
斐波那契数列介绍: 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1.1.2.3.5.8.13.21.34.……在数学上,斐波那契数列以如下被以递推的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=3,n∈N*)在现代物理.准晶体结构.化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963…
打印斐波拉契数列前n项 #encoding=utf-8 def fibs(num):    result =[0,1]    for i in range(num-2):        result.append(result[-2]+result[-1])    return resultprint fibs(10) 结果:…
#打印斐波那契数列的第101项 a = 1 b = 1 for count in range(99): a,b = b,a+b else: print(b) 方法2: #打印斐波那契数列的第101项 a = 1 b = 1 for i in range(2,101): if i == 100: print(a+b) b += a a = b-a…
#打印斐波那契数列 f0 = 0 f1 = 1 for n in range(2,101): fn = f1 + f0 if fn <= 100: print(fn) f0 = f1 f1 = fn 方法2: #打印斐波那契数列,100以内 print(0) print(1) a = 0 b = 1 while True: c = a+b if c > 100: break a = b b = c print(c)…
2019.8.3 [HZOI]NOIP模拟测试12 A. 斐波那契(fibonacci) 全场比赛题解:https://pan.baidu.com/s/1eSAMuXk 找规律 找两个节点的lca,需要能快速根据编号求出父亲的编号. 斐波那契数列:1.2.3.5.8.13.21... 第10对兔子的父节点:斐波那契数列中小于10的最大项为8,所以第10对兔子的父节点为10-8=2. 很容易理解:第5个月时,共有8对兔子(斐波那契第5项),到了第6个月时,共13对兔子.多出的5对兔子,一定是已经成…
看到这个标题,貌似很高大上的样子= =,其实这个也是大家熟悉的东西,先给大家科普一下斐波拉契数列. 斐波拉契数列 又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.…… 在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*) 在现代物理.准晶体结构.化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以<斐波纳契数列季刊>为名的一份数学杂志,用于专门刊载这方面的…