Libliner 中的-s 参数选择:primal 和dual LIBLINEAR的优化算法主要分为两大类,即求解原问题(primal problem)和对偶问题(dual problem).求解原问题使用的是TRON的优化算法,对偶问题使用的是Coordinate Descent优化算法.总的来说,两个算法的优化效率都较高,但还是有各自更加擅长的场景.对于样本量不大,但是维度特别高的场景,如文本分类,更适合对偶问题求解,因为由于样本量小,计算出来的Kernel Matrix也不大,后面的优化也…
机器学习中的范数规则化之(二)核范数与规则项参数选择 zouxy09@qq.com http://blog.csdn.net/zouxy09 上一篇博文,我们聊到了L0,L1和L2范数,这篇我们絮叨絮叨下核范数和规则项参数选择.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 三.核范数 核范数||W||*是指矩阵奇异值的和,英文称呼叫Nuclear Norm.这个相对于上面火热的L1和L2来说,可能大家就会陌生点.那它是干嘛用的呢?霸气登场:约束Low-Rank(…
http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法…
装载自:https://blog.csdn.net/u012467880/article/details/52852242 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是“minimizeyour error while r…
在Java5 中提供了变长参数(varargs),也就是在方法定义中可以使用个数不确定的参数,对于同一方法可以使用不同个数的参数调用,例如print("hello");print("hello","lisi");print("hello","张三", "alexia");下面介绍如何定义可变长参数 以及如何使用可变长参数. 1. 可变长参数的定义 使用...表示可变长参数,例如 prin…
libSVM 参数选择  [预测标签,准确率,决策值]=svmpredict(测试标签,测试数据,训练的模型);    原文参考:http://blog.csdn.net/carson2005/article/details/6539192 关于SVM参数c&g选取的总结帖[matlab-libsvm]:http://www.ilovematlab.cn/thread-47819-1-1.html  原文见下方 需要提醒的是,libSVM支持多类分类问题,当有k个待分类问题时,libSVM构建k…
原文转自:http://www.cnblogs.com/lanxuezaipiao/p/3190673.html 在Java5 中提供了变长参数(varargs),也就是在方法定义中可以使用个数不确定的参数,对于同一方法可以使用不同个数的参数调用. 例如print("hello");print("hello","lisi");print("hello","张三", "alexia");…
以前接触过libsvm,现在算在实际的应用中学习 LIBSVM 使用的一般步骤是: 1)按照LIBSVM软件包所要求的格式准备数据集: 2)对数据进行简单的缩放操作: 3)首要考虑选用RBF 核函数: 4)采用交叉验证选择最佳参数C与g : 5)采用最佳参数C与g 对整个训练集进行训练获取支持向量机模型: 6)利用获取的模型进行测试与预测. 参数认识 LIBSVM使用的数据格式该软件使用的训练数据和检验数据文件格式如下: [label] [index1]:[value1] [index2]:[v…
先看下ababoost和决策树效果对比 import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import learning_curve def plot_learning_curve(estimator,title,X,y,ylim=None,cv=None, n_jobs=None,train_sizes=np.linspace(.1,1.0,10)): plt.figure() plt…
一.httpClient发送Post 原文https://www.cnblogs.com/Vdiao/p/5339487.html public static String httpPostWithJSON(String url) throws Exception { HttpPost httpPost = new HttpPost(url); CloseableHttpClient client = HttpClients.createDefault(); String respContent…