首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
「SHOI2015」超能粒子炮・改
】的更多相关文章
loj#2038. 「SHOI2015」超能粒子炮・改
题目链接 loj#2038. 「SHOI2015」超能粒子炮・改 题解 卢卡斯定理 之后对于%p分类 剩下的是个子问题递归 n,k小于p的S可以预处理,C可以卢卡斯算 代码 #include<cstdio> #include<algorithm> inline long long read() { long long x = 0,f = 1; char c = getchar(); while(c < '0' || c > '9') c = getchar(); whi…
「SHOI2015」超能粒子炮・改
「SHOI2015」超能粒子炮・改 给你\(T\)组询问,每组询问给定参数\(n,k\),计算\(\sum\limits_{i=0}^k\dbinom{n}{i}\). \(T\leq10^5,n,k\leq10^{18}\). 这题其实是\(\operatorname{Lucas}\)定理的一个简单扩展. 首先利用\(\operatorname{Lucas}\)定理化简所求和式,由\(\dbinom{n}{m}=\dbinom{n/p}{m/p}\times\dbinom{n\%p}{m\%p…
【LOJ】#2038. 「SHOI2015」超能粒子炮・改
题解 用lucas随便分析一波就出来了 \(\binom{n}{k} = \binom{n % p}{k % p}\binom{n / p}{k / p}\) 那么对于一个余数r,如果r <= k % p 那么它还要乘上 \(\sum_{i = 0}^{\lfloor \frac{k}{p} \rfloor} \binom{\lfloor \frac{n}{p} \rfloor % p}{i}\) 这显然是个相同的问题,可以递归 如果r > k % p那么会比前一个问题少乘一个\(\binom…
BZOJ 4591 【SHOI2015】 超能粒子炮·改
题目链接:超能粒子炮·改 这道题的大体思路就是用\(lucas\)定理,然后合并同类项,就可以得到一个可以递归算的式子了. 我们用\(S(n,k)\)表示答案,\(p\)表示模数(\(2333\)是一个质数),那么有: \begin{aligned}S(n,k)&=\sum_{i=0}^k\binom{n}{i} \\&=\sum_{i=0}^k\binom{n\bmod p}{i \bmod p}\binom{\lfloor \frac{n}{p} \rfloor}{\lfloor \f…
bzoj4591 【Shoi2015】超能粒子炮·改
由Lucas定理C(n,k)=C(n/2333,k/2333)*C(n%2333,k%2333)%2333 则ans=ΣC(n,i),(i<=k) =C(n/2333,0)*C(n%2333,0)+C(n/2333,0)*C(n%2333,1)+...+C(n/2333,0)*C(n%2333,2332) +C(n/2333,1)*C(n%2333,0)+C(n/2333,1)*C(n%2333,1)+...+C(n/2333,1)*C(n%2333,2332) +..... +C(n/…
Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 178 Solved: 70[Submit][Status][Discuss] Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提升.它有三个参数n,k.它会 向编号为0到k的位置发射威力为C(n…
bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]
4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^{18} \] lucas定理,展开一层然后整除分块一下,不完整的块单独拿出来,就是 \[ S(n,k) = S(\frac{n}{p}, \frac{k}{p}-1)S(n \bmod p, p-1) + \binom{\frac{n}{p}}{ \frac{k}{p}} S(n \bmod p,…
【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)
[BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. 令\(f(n,k)\)表示答案. \[\begin{aligned} f(n,k)&=\sum_{i=0}^k {n\choose i}\\ &=\sum_{i=0}^k {n/p\choose i/p}*{n\%p\choose i\%p}\\ &=\sum_{x=0}^{p-1}{…
洛谷 P4345 [SHOI2015]超能粒子炮·改 解题报告
P4345 [SHOI2015]超能粒子炮·改 题意 求\(\sum_{i=0}^k\binom{n}{i}\),\(T\)组数据 范围 \(T\le 10^5,n,j\le 10^{18}\) 设\(f(n,k)=\sum_{i=0}^k\binom{n}{i}\) \[ \begin{aligned} &f(n,k)\\ =&\sum_{i=0}^k\binom{n/p}{i/p}\binom{n\%p}{i\%p}\\ =&\sum_{j=0}^{k/p-1}\binom{n…
bzoj4591 / P4345 [SHOI2015]超能粒子炮·改
P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 于是原式$=\sum_{i=1}^{k}C(n/P,k/P)*C(n\%P,k\%P)\%P$ 发现介个$k/P$是可以用整除分块搞的 于是拆开各个分块 $=C(n/P,0)*\sum_{i=0}^{P-1}C(n\%P,i)$ $+C(n/P,1)*\sum_{i=0}^{P-1}C(n\%P,…