首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
单源最短路径—Bellman-Ford和Dijkstra算法
】的更多相关文章
单源最短路径-迪杰斯特拉算法(Dijkstra's algorithm)
Dijkstra's algorithm 迪杰斯特拉算法是目前已知的解决单源最短路径问题的最快算法. 单源(single source)最短路径,就是从一个源点出发,考察它到任意顶点所经过的边的权重之和为最小的路径. 迪杰斯特拉算法不能处理权值为负数或为零的边,因为本质上它是一种贪心算法,出现了负数意味着它可能会舍弃一条正确的边,而选择一个长边和一个负数边,因为长边和负数边的权值之和可能小于那条正确的边. 算法描述 它的过程也很简单,按照广度遍历的方式考察每一条有向边(v,w),如果可以对边进行…
matlab练习程序(单源最短路径Bellman-Ford)
该算法可以用来解决一般(边的权值为负)的单源最短路径问题,而dijkstra只能解决权值非负的情况. 此算法使用松弛技术,对每一个顶点,逐步减少源到该顶点的路径的估计值,直到达到最短的路径. 算法运算结果: matlab代码如下,netplot函数在这里,不过当时函数中表示两节点没有路径用的是0,而现在需要改成inf: clear all;close all;clc %初始化邻接压缩表 b=[ ; ; ; -; -; -; ; ; ]; m=max(max(b(:,:))); %压缩表中最大值就…
Dijkstra 单源最短路径算法
Dijkstra 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法,由计算机科学家 Edsger Dijkstra 于 1956 年构思并于 1959 年发表.其解决的问题是:给定图 G 和源顶点 v,找到从 v 至图中所有顶点的最短路径. Dijkstra 算法采用贪心算法(Greedy Algorithm)范式进行设计.在最短路径问题中,对于带权有向图 G = (V, E),Dijkstra 算法的初始实现版本未使用最小优先…
单源最短路径算法---Dijkstra
Dijkstra算法树解决有向图G=(V,E)上带权的单源最短路径问题,但是要求所有边的权值非负. 解题思路: V表示有向图的所有顶点集合,S表示那么一些顶点结合,从源点s到该集合中的顶点的最终最短路径的权值(程序中用dist[i]表示)已经确定.算法反复选择具有最短路径估计的顶点u 属于 V-S(即未确定最短路径的点,程序中finish[i]=false的点),并将u加入到S中(用finish[i]=true表示),最后对u的所有输出边进行松弛. 程序实现: 输入数据: 5 7 0…
Til the Cows Come Home(poj 2387 Dijkstra算法(单源最短路径))
Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 32824 Accepted: 11098 Description Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessi…
单源最短路径——dijkstra算法
dijkstra算法与prim算法的区别 1.先说说prim算法的思想: 众所周知,prim算法是一个最小生成树算法,它运用的是贪心原理(在这里不再证明),设置两个点集合,一个集合为要求的生成树的点集合A,另一个集合为未加入生成树的点B,它的具体实现过程是: 第1步:所有的点都在集合B中,A集合为空. 第2步:任意以一个点为开始,把这个初始点加入集合A中,从集合B中减去这个点(代码实现很简单,也就是设置一个标示数组,为false表示这个点在B中,为true表示这个点在A中),寻找与它相邻的点…
【转】Dijkstra算法(单源最短路径)
原文:http://www.cnblogs.com/dolphin0520/archive/2011/08/26/2155202.html 单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路径.在弄清楚如何求算单源最短路径问题之前,必须弄清楚最短路径的最优子结构性质. 一.最短路径的最优子结构性质 该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径.下面证明该性质的正…
图论(四)------非负权有向图的单源最短路径问题,Dijkstra算法
Dijkstra算法解决了有向图G=(V,E)上带权的单源最短路径问题,但要求所有边的权值非负. Dijkstra算法是贪婪算法的一个很好的例子.设置一顶点集合S,从源点s到集合中的顶点的最终最短路径的权值均已确定.算法反复选择具有最短路径估计的顶点u,并将u加入到S中,对u 的所有出边进行松弛.如果可以经过u来改进到顶点v的最短路径的话,就对顶点v的估计值进行更新. 如上图,u为源点,顶点全加入到优先队列中. ,队列中最小值为u(值为0),u出队列,对u的出边进行松弛(x.v.w),队列最小值…
单源最短路径(dijkstra算法)php实现
做一个医学项目,当中在病例评分时会用到单源最短路径的算法.单源最短路径的dijkstra算法的思路例如以下: 如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点.那么(Vi...Vk)也必然是从i到k的最短路径.Dijkstra是以最短路径长度递增,逐次生成最短路径的算法.比如:对于源顶点V0,首先选择其直接相邻的顶点中长度最短的顶点Vi,那么当前已知可得从V0到达Vj顶点的最短距离dist[j]=min{dist[j],dist[i]+cost[i][j]}.如…
Dijkstra算法——单源最短路径问题
学习一个点到其余各个顶点的最短路径--单源最短路径 Dijkstra算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题. 迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 算法的基本思想: 每次找到离源点最近的一个顶点,然后以该顶点为中心进行扩展,最终得到源点到其余所有点的最短路径. 算法基本步骤如下: 1.将所有顶点分为两部分:已知最短路程的顶点集合P和未知最短路径的顶点集…