[Luogu2656]采蘑菇】的更多相关文章

题目大意: 给你一个有向图,每条边有一个边权w以及恢复系数k, 你从s点出发乱走,经过某条边时会获得相应的收益w,而当第二次经过这条边时相应的收益为w*k下取整. 问你最大能获得的收益为多少? 思路: 缩点+DP. 首先跑一下Tarjan(只要从s开始跑,因为没跑到的地方肯定和答案没关系). 对于每个强连通分量,我们算一下经过这个强联通分量能获得的总收益sum(就是拼命在这上面绕圈圈). 把原图缩为一个DAG,然后就可以DP了. 设当前点为i,后继结点为j,边权为w,j的SCC的总收益为sum[…
Description 小胖和ZYR要去ESQMS森林采蘑菇. ESQMS森林间有N个小树丛,M条小径,每条小径都是单向的,连接两个小树丛,上面都有一定数量的蘑菇.小胖和ZYR经过某条小径一次,可以采走这条路上所有的蘑菇.由于ESQMS森林是一片神奇的沃土,所以一条路上的蘑菇被采过后,又会长出一些新的蘑菇,数量为原来蘑菇的数量乘上这条路的“恢复系数”,再下取整. 比如,一条路上有4个蘑菇,这条路的“恢复系数”为0.7,则第一~四次经过这条路径所能采到的蘑菇数量分别为4,2,1,0. 现在,小胖和…
采蘑菇 Time Limit: 20 Sec  Memory Limit: 256 MB Description Input Output Sample Input 5 1 2 3 2 3 1 2 1 3 2 4 2 5 Sample Output 10 9 12 9 11 HINT Main idea 询问从以每个点为起始点时,各条路径上的颜色种类的和. Solution 我们看到题目,立马想到了O(n^2)的做法,然后从这个做法研究一下本质,我们确定了可以以点分治作为框架. 我们先用点分治来…
P2656 采蘑菇 题目描述 小胖和ZYR要去ESQMS森林采蘑菇. ESQMS森林间有N个小树丛,M条小径,每条小径都是单向的,连接两个小树丛,上面都有一定数量的蘑菇.小胖和ZYR经过某条小径一次,可以采走这条路上所有的蘑菇.由于ESQMS森林是一片神奇的沃土,所以一条路上的蘑菇被采过后,又会长出一些新的蘑菇,数量为原来蘑菇的数量乘上这条路的“恢复系数”,再下取整. 比如,一条路上有4个蘑菇,这条路的“恢复系数”为0.7,则第一~四次经过这条路径所能采到的蘑菇数量分别为4,2,1,0. 现在,…
https://www.luogu.org/problem/show?pid=2656 题目描述 小胖和ZYR要去ESQMS森林采蘑菇. ESQMS森林间有N个小树丛,M条小径,每条小径都是单向的,连接两个小树丛,上面都有一定数量的蘑菇.小胖和ZYR经过某条小径一次,可以采走这条路上所有的蘑菇.由于ESQMS森林是一片神奇的沃土,所以一条路上的蘑菇被采过后,又会长出一些新的蘑菇,数量为原来蘑菇的数量乘上这条路的“恢复系数”,再下取整. 比如,一条路上有4个蘑菇,这条路的“恢复系数”为0.7,则第…
歧义差评:但是和题意理解一样了之后细节依然处理了很久,说明还是水平不够…… 题目描述 Marisa来到了森林之中,看到了一排nn个五颜六色的蘑菇,编号从1-n1−n,这些蘑菇的颜色分别为col[1],col[2]...col[n]col[1],col[2]...col[n]由于她很挑剔,所以她只会采那些"魔法蘑菇" 一个蘑菇被叫做"魔法蘑菇",当且仅当它在给定的某段区间内,并且在这段给定区间内与它颜色相同的蘑菇(包括它本身)的个数 与在这个给定区间外这种颜色的蘑菇的…
这是一道树链剖分的题目: 很容易想到,我们在树剖后,对于操作1,直接单点修改: 对于答案查询,我们直接的时候,我们假设查询的点是3,那么我们在查询的时候可分为两部分: 第一部分:查找出除3这颗子树以外有多少个蘑菇,然后将蘑菇数*此路径: 然后再一一枚举3这颗树的各个子树即可: 这种做法在牛客上能过,不过比赛时的测评应该会超时,比如当出现菊花图的时候,复杂度就会到n^2log n; 先把这份代码贴上: #include<bits/stdc++.h> using namespace std; ;…
尽管是缩点的习题,思路也是在看了题解后才明白的. 首先,每个强连通分量内的点都是一定互通的,也就是可以完全把这里面的边都跑满,摘掉所有能摘的蘑菇.那么,考虑给每一个强连通分量化为的新点一个点权,代表摘光蘑菇能拿到的边权之和.然后,在新点之间保留原来的桥及其初始权值.(每一个桥一定只能跑一遍,否则说明这两个本应单向通行的分量之间有返回的路径,则二者可构成一个更大的分量.这个结论正是tarjan算法求有向图dcc的核心原理.)现在得到了一张新图,问题在于如何在一张包含点权.边权的DAG上求起始于定点…
题目大意: 给你一个无向图,点i在时间t[i]之前是不存在的,有q组询问,问你时间为t时从x到y的最短路. 点的编号按出现的时间顺序给出,询问也按照时间顺序给出. 思路: Floyd. Floyd的本质思想就是一个动规, 由于你的点和询问都是按照时间顺序给出的,因此我们就可以只用枚举询问时间之前的点作为中转点k. 然后就是裸的Floyd. #include<cstdio> #include<cctype> #include<algorithm> inline int g…
如果暴力维护,每次询问时需要对所有孩子做计算 考虑通过树剖来平衡修改与询问的时间,询问时计算重链和父树,轻链的贡献预先维护好,修改时则需要修改可能影响的轻链贡献,因为某个点到根的路径上轻重交替只有 \(O(\log n)\) 个,所以只需要修改这么多次,于是复杂度有保证,树状数组维护子树即可 我真是个憨憨,打错树剖调一晚,地上蛙血一大摊 #include <bits/stdc++.h> using namespace std; #define int long long const int N…